《z变换与离散时间傅里叶变换教案.pptx》由会员分享,可在线阅读,更多相关《z变换与离散时间傅里叶变换教案.pptx(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、会计学1z变换与离散时间傅里叶变换变换与离散时间傅里叶变换本章主要内容:本章主要内容:1、z变换的定义及收敛域 2、z变换的反变换 3、z变换的基本性质和定理 4、离散信号的DTFTDTFT 5、z变换与DTFTDTFT的关系 6、离散系统的z变换法描述第1页/共87页2.1 z变换的定义及变换的定义及收敛域收敛域 信号和系统的分析方法有两种:信号和系统的分析方法有两种:时域分析方法时域分析方法变换域分析方法变换域分析方法连续时间信号与系统连续时间信号与系统 LT FT离散时间信号与系统离散时间信号与系统 ZT FT第2页/共87页 一、一、ZT的定义的定义 z 是复变量,所在的复平面称为是复
2、变量,所在的复平面称为z平面平面第3页/共87页 二、二、ZT的收敛域的收敛域n n对于任意给定序列x(n),使其z变换X(z)收敛的所有z值的集合称为X(z)的收敛域。n n级数收敛的充要条件是满足绝对可和第4页/共87页1)有限长序列)有限长序列第5页/共87页 除除0和和两点是否收敛与两点是否收敛与n1和和n2取值情况取值情况有关外,整个有关外,整个z 平面均收敛。平面均收敛。如果如果n20,则收敛域不包括,则收敛域不包括点点 如果如果n10,则收敛域不包括,则收敛域不包括0点点 如果如果n10n2,收敛域不包括,收敛域不包括0、点点第6页/共87页2)右边序列)右边序列因果序列因果序列
3、的的z变换必在变换必在处收敛处收敛在在处收敛的处收敛的z变换,变换,其序列必为其序列必为因果序列因果序列第7页/共87页3)左边序列)左边序列第8页/共87页4)双边序列)双边序列第9页/共87页例例1收敛域应是整个收敛域应是整个z的闭平面的闭平面第10页/共87页例例2:求:求x(n)=RN(n)的的z变换及其收敛域变换及其收敛域第11页/共87页例例3:求:求x(n)=anu(n)的变换及其收敛域的变换及其收敛域第12页/共87页例例4:求:求x(n)=-anu(-n-1)的变换及其收敛域的变换及其收敛域第13页/共87页例例5:求:求x(n)=a|n|,a为实数,求为实数,求ZT及其收敛
4、域及其收敛域第14页/共87页第15页/共87页n n给定z变换X(z)不能唯一地确定一个序列,只有同时给出收敛域才能唯一确定。n nX(z)在收敛域内解析,不能有极点,故:n n右边序列的右边序列的z z变换收敛域一定在变换收敛域一定在模最大模最大的有限极点所在圆之外的有限极点所在圆之外n n左边序列的左边序列的z z变换收敛域一定在变换收敛域一定在模最小模最小的有限极点所在圆之内的有限极点所在圆之内第16页/共87页第17页/共87页2.2 z反变换反变换n n实质:求实质:求X(z)X(z)幂级数展开式幂级数展开式n nz z反变换的求解方法:反变换的求解方法:围线积分法(留数法)围线积
5、分法(留数法)部分分式法部分分式法 长除法长除法z反变换反变换:从从X(z)中还原出原序列中还原出原序列x(n)第18页/共87页1 1、围数积分法求解围数积分法求解(留数法)(留数法)若函数X(z)zn-1在围数C上连续,在C以内有K个极点zk,而在C以外有M个极点zm,则有:第19页/共87页1 1、围数积分法求解(留围数积分法求解(留数法)数法)根据复变函数理论,若函数X(z)在环状区域 内是解析的,则在此区域内X(z)可展开成罗朗级数,即而 其中围线c是在X(z)的环状收敛域内环绕原点的一条反时针方向的闭合单围线。第20页/共87页n n 若F(z)在c外M个极点zm,且分母多项式z的
6、阶次比分子多项式高二阶或二阶以上,则:利用留数定理求围线积分,令利用留数定理求围线积分,令 若若F(z)在围线在围线c上连续,在上连续,在c内有内有K个极点个极点zk,则:则:单阶极点的留数:单阶极点的留数:第21页/共87页第22页/共87页第23页/共87页第24页/共87页思考:n=0,1时,F(z)在围线c外也无极点,为何第25页/共87页2 2、部分分式展开法求、部分分式展开法求解解IZTIZT :常见序列的常见序列的ZT参见书参见书p.54页的表页的表2-1若函数若函数X(z)是是z的有理分式,可表示为:的有理分式,可表示为:利用部分分式的利用部分分式的z反变换和可以得到函数反变换
7、和可以得到函数X(z)的的z反变换。反变换。第26页/共87页第27页/共87页第28页/共87页例例2 2设设利用部分分式法求利用部分分式法求z z反变换。反变换。解:解:第29页/共87页3 3、幂级数展开法求解(长除法)、幂级数展开法求解(长除法):一般一般X(z)是有理分式,可利用分子多项式除是有理分式,可利用分子多项式除分母多项式(长除法法)得到幂级数展开式,分母多项式(长除法法)得到幂级数展开式,从而得到从而得到x(n)。第30页/共87页1 1、线性性、线性性2.32.3 Z Z变换的基本性质和定理变换的基本性质和定理变换的基本性质和定理变换的基本性质和定理R1R2R|a|RR2
8、 2、序列的移位、序列的移位3 3、z z域尺度变换域尺度变换 (乘以指数序列)(乘以指数序列)4 4、z z域求导域求导 (序列线性加权)(序列线性加权)第31页/共87页Z Z变换的基本性质(续)变换的基本性质(续)5 5、翻褶序列、翻褶序列1/RR6 6、共轭序、共轭序列列7 7、初值定理、初值定理8 8、终值定理、终值定理第32页/共87页Z变换的基本性质(续变换的基本性质(续)9 9、有限项累加特性、有限项累加特性ZTZT的主要性质参见书的主要性质参见书p.69p.69页的表页的表2-22-21010、序列的卷积和、序列的卷积和1111、序列乘法、序列乘法1212、帕塞瓦定理、帕塞瓦
9、定理第33页/共87页第34页/共87页2.42.4 序列序列ZT、连续信号、连续信号LT和和FT的关系的关系若:连续信号采样后的拉氏变换连续信号采样后的拉氏变换LT第35页/共87页抽样序列:抽样序列:抽样序列:抽样序列:当当两变换之间的关系,就是由复变量两变换之间的关系,就是由复变量s s平面到复平面到复变量变量z z平面的映射,其映射关系为平面的映射,其映射关系为对比:对比:第36页/共87页进一步讨论这一映射关系:进一步讨论这一映射关系:进一步讨论这一映射关系:进一步讨论这一映射关系:1第37页/共87页s s平面到平面到z z平面的平面的映射是多值映射。映射是多值映射。辐射线辐射线=
10、0 0T T平行直线平行直线=0 0正实轴正实轴=0实轴实轴=0Z平面平面S平面平面:第38页/共87页抽样序列在单位圆上的抽样序列在单位圆上的z z变换,就等于其理想抽样变换,就等于其理想抽样信号的傅里叶变换信号的傅里叶变换第39页/共87页数字频率数字频率w w表示表示z z平面的辐角,它和模拟角频率平面的辐角,它和模拟角频率WW的关系为的关系为在以后的讨论中,将用数字频率在以后的讨论中,将用数字频率w w来作为来作为z z平面上平面上单位圆的参数,即单位圆的参数,即所以说,数字频率是模拟角频率的归一化值,或所以说,数字频率是模拟角频率的归一化值,或是模拟频率对抽样频率的相对比值乘以是模拟
11、频率对抽样频率的相对比值乘以2 2p p第40页/共87页2.5 离散信号的付氏变换离散信号的付氏变换DTFT一、一、DTFT的定义的定义变换对:变换对:称为称为离散时间傅里叶变换(离散时间傅里叶变换(DTFT)。)。第41页/共87页FTFT存在的充分必要条件是:存在的充分必要条件是:如果引入冲激函数,一些绝对不可和的序列,如果引入冲激函数,一些绝对不可和的序列,如周期序列,其傅里叶变换可用冲激函数的如周期序列,其傅里叶变换可用冲激函数的形式表示出来。形式表示出来。第42页/共87页二、比较二、比较ZT和和DTFT的定义:的定义:利用利用ZT和和DTFT的关系可以有的关系可以有ZT计算计算D
12、TFT。序列的傅里叶变换是序列的序列的傅里叶变换是序列的z变换在单位变换在单位圆上的值圆上的值第43页/共87页例例1 1、计算门序列的、计算门序列的DTFTDTFT (类似类似Sa(.)Sa(.)函数函数 )(线性相位线性相位)解:解:DTFT幅频特性:幅频特性:相频特性:相频特性:第44页/共87页图示说明:图示说明:图示说明:图示说明:)(wX0p2p2-pp-N=8Nw第45页/共87页例例2 2、已知、已知 (),(),计算其计算其DTFTDTFT。由此可以得到由此可以得到FT的的幅频特性幅频特性和和相频特性相频特性第46页/共87页物理说明物理说明:若若 (语音信号处理中常用该指数
13、语音信号处理中常用该指数 函数展宽单音信号的频谱函数展宽单音信号的频谱),),该信号该信号3db3db带宽带宽 (或或 )。具体求。具体求 解过程如下:解过程如下:令令 即即 可解出可解出第47页/共87页三、三、三、三、FTFT与与与与DTFTDTFT的关系的关系的关系的关系归一化归一化 利用利用FT与与DTFT关系计算下列序列的关系计算下列序列的 DTFT 例:例:第48页/共87页解:解:1)2)3)第49页/共87页2.6 DTFT的一些的一些性质性质1 1、线性性:、线性性:2 2、实序列:、实序列:实偶性:实偶性:实奇性:实奇性:3 3、时移特性:、时移特性:第50页/共87页4
14、4、乘以指数序列、乘以指数序列 (调制性)(调制性)5 5、序列线性加权、序列线性加权6 6、序列翻褶、序列翻褶7 7、序列共、序列共轭轭第51页/共87页8 8 8 8、卷积定理:、卷积定理:、卷积定理:、卷积定理:(时域时域时域时域)(频域频域频域频域)DTFT的主要性质参见书的主要性质参见书p.78页的表页的表2-39 9、帕色伐尔定理:、帕色伐尔定理:(Parseval Theory)频域卷积在一周期内积分频域卷积在一周期内积分,称称周期卷积周期卷积。第52页/共87页下面举例说明下面举例说明下面举例说明下面举例说明DTFTDTFT性质得使用。性质得使用。性质得使用。性质得使用。计算下
15、列积分计算下列积分计算下列积分计算下列积分I I的值。的值。的值。的值。解:根据解:根据 利用时域卷积定理有:利用时域卷积定理有:上式卷积上式卷积n=0时就是积分时就是积分I的值。的值。第53页/共87页2.7 周期性序列的周期性序列的DTFT1、复指数序列的傅里叶变换q复指数序列复指数序列ejw w0n的傅里叶变换,是以的傅里叶变换,是以w w0为中心,为中心,以以2p p的整数倍为间距的一系列冲激函数,其积分的整数倍为间距的一系列冲激函数,其积分面积为面积为2p pq思考,思考,DTFTcos(w w0n+f)f)、DTFT sin(w w0n+f)f)第54页/共87页2、常数序列的傅里
16、叶变换、常数序列的傅里叶变换q常数序列的傅里叶变换,是以常数序列的傅里叶变换,是以w=w=0为中心,以为中心,以2p p的的整数倍为间距的一系列冲激函数,其积分面积为整数倍为间距的一系列冲激函数,其积分面积为2p p3、周期为、周期为N的抽样序列串的傅里叶变换的抽样序列串的傅里叶变换q周期为周期为N的周期性抽样序列,其傅里叶变换是频的周期性抽样序列,其傅里叶变换是频率在率在w=w=2p p/N的整数倍上的的整数倍上的一系列冲激函数之和,一系列冲激函数之和,这些冲激函数的积分面积为这些冲激函数的积分面积为2p/Np/N第55页/共87页4、一般性的周期为、一般性的周期为N的周期性序列的傅里叶变换
17、的周期性序列的傅里叶变换第56页/共87页q周期性序列周期性序列 (周期为(周期为N)的傅里叶变换是)的傅里叶变换是一一系列冲激函数串,其冲激函数的积分面积等于系列冲激函数串,其冲激函数的积分面积等于 乘以乘以2p/N p/N,而,而 是是x(n)的一个周期的一个周期的的傅里叶变换傅里叶变换X(ejw w)在频域中在频域中w=w=2p/Np/N的整数倍的各的整数倍的各抽样点上的抽样值。抽样点上的抽样值。q即:即:第57页/共87页e e满足满足0e 0e 2p p/N从从w=0w=0之前开始抽样;之前开始抽样;在在w=2pw=2p之间结束抽样;之间结束抽样;此区间共有此区间共有N N个抽样值:
18、个抽样值:0 0 k N-1N-1第58页/共87页周期序列的周期序列的DFS正变换和反变换正变换和反变换周期序列的傅里叶级数(周期序列的傅里叶级数(DFS)其中:其中:第59页/共87页2.8 Fourier变换的对变换的对称性质称性质共轭对称序列:共轭反对称序列:共轭反对称序列:任意序列可表示成任意序列可表示成xe(n)和和xo(n)之和之和:其中:其中:定义:定义:第60页/共87页其中:其中:同样,同样,x(n)的的Fourier变换变换 也可分解成:也可分解成:第61页/共87页对称性质对称性质 序列序列 FourierFourier变换变换第62页/共87页实数序列的对称性质实数序
19、列的对称性质 序列序列 FourierFourier变换变换第63页/共87页实数序列的实数序列的Fourier变换满足共轭对称性变换满足共轭对称性实部是实部是的偶函数的偶函数虚部是虚部是的奇函数的奇函数幅度是幅度是的偶函数的偶函数幅角是幅角是的奇函数的奇函数第64页/共87页2.9 2.9 离散系统的系统函数、系统的频率响应离散系统的系统函数、系统的频率响应离散系统的系统函数、系统的频率响应离散系统的系统函数、系统的频率响应LSI系统的系统函数H(z):单位抽样响应单位抽样响应h(n)h(n)的的z z变换变换其中:其中:y(n)=x(n)*h(n)Y(z)=X(z)H(z)系统的系统的频率
20、响应频率响应 :单位圆上的系统函数单位圆上的系统函数,单位抽样响应单位抽样响应h(n)的的DTFT第65页/共87页1、若、若LSI系统为因果稳系统为因果稳定系统定系统稳定系统的系统函数稳定系统的系统函数H(z)H(z)的的RocRoc须包含单位圆,须包含单位圆,即频率响应存在且连续即频率响应存在且连续H(z)须从单位圆到须从单位圆到的整个的整个z域内收敛即系统域内收敛即系统函数函数H(z)的全部极点必须在单位圆内的全部极点必须在单位圆内1 1)因果:)因果:2 2)稳定:)稳定:序列序列h(n)绝对可和,即绝对可和,即而而h(n)的的z变换的变换的Roc:3 3)因果稳定:)因果稳定:Roc
21、Roc:第66页/共87页第67页/共87页2、系统函数与差分方、系统函数与差分方程程常系数线性差分方程:取取z变换变换则系统函数则系统函数第68页/共87页第69页/共87页第70页/共87页第71页/共87页第72页/共87页3、系统的频率响应的、系统的频率响应的意义意义1)LSI系统对复指数序列的稳态响应:第73页/共87页2)LSI系统对正弦序列的稳态响应系统对正弦序列的稳态响应输出同频输出同频 正弦序列正弦序列幅度受频率响应幅度幅度受频率响应幅度 加权加权相位为输入相位与系统相位响应之和相位为输入相位与系统相位响应之和第74页/共87页3)LSI系统对任意输入序列的稳态响应 其中:其
22、中:微分增量(复指数):微分增量(复指数):第75页/共87页4、频率响应的几何确、频率响应的几何确定法定法利用H(z)在z平面上的零极点分布频率响应:频率响应:第76页/共87页则频率响应的令令幅角:幅角:幅度:幅度:第77页/共87页n n零点位置影响凹谷点的位置与深度零点位置影响凹谷点的位置与深度n n零点在单位圆上,谷点为零零点在单位圆上,谷点为零n n零点趋向于单位圆,谷点趋向于零零点趋向于单位圆,谷点趋向于零n n极点位置影响凸峰的位置和深度极点位置影响凸峰的位置和深度n n极点趋向于单位圆,峰值趋向于无穷极点趋向于单位圆,峰值趋向于无穷n n极点在单位圆外,系统不稳定极点在单位圆
23、外,系统不稳定第78页/共87页第79页/共87页第80页/共87页第81页/共87页第82页/共87页第83页/共87页5、IIR系统和系统和FIR系统系统无限长单位冲激响应(IIR)系统:单位冲激响应h(n)是无限长序列有限长单位冲激响应(有限长单位冲激响应(FIR)系统:)系统:单位冲激响应单位冲激响应h(n)是有限长序是有限长序列列第84页/共87页IIR系统:至少有一个系统:至少有一个FIR系统:全部系统:全部全极点系统全极点系统(自回归系统,自回归系统,AR系统系统):分子只有常数项:分子只有常数项零极点系统零极点系统(自回归滑动平均系统,自回归滑动平均系统,ARMA系统系统):分子不止常数项分子不止常数项收敛域收敛域 内无极点,是全零点系统内无极点,是全零点系统(滑动平均系统,(滑动平均系统,MA系统)系统)第85页/共87页IIR系统:至少有一个系统:至少有一个有反馈环路,采用递归型结构有反馈环路,采用递归型结构FIR系统:全部系统:全部无反馈环路,多采用非递归结构无反馈环路,多采用非递归结构Homework:P941(1)(2)(3)3(1)7 10 14 18第86页/共87页
限制150内