厌氧工艺.pdf
《厌氧工艺.pdf》由会员分享,可在线阅读,更多相关《厌氧工艺.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 7.1 厌氧工艺 厌氧生物处理是利用厌氧性微生物的代谢特性,在不需提供外源能量的条件下,以被还原有机物作为受氢体,将有机物最终转化为甲烷、二氧化碳、水、硫化氢和氨等小分子物质的处理方法。在此过程中,不同的微生物的代谢过程相互影响,相互制约,形成复杂的生态系统 厌氧降解过程可以被分为四个阶段。水解阶段:蛋白质、碳水化合物和脂类等高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能被细菌直接利用。因此它们在第一阶段被细菌胞外酶分解为小分子。如废水中的纤维素被纤维素酶水解为纤维二糖与葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等,这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。发酵阶段
2、:在这一阶段,上述的小分子的化合物在发酵细菌的细胞内转化为更为简单的化合物并分泌到细胞外,这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,氨基酸、糖类、较高级的脂肪酸及醇类被厌氧氧化。产乙酸阶段:在此阶段,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。产甲烷阶段:在这一阶段里,乙酸、氢气、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新的细胞物质。厌氧生物处理技术由于高效率、低成本、高有机负荷和多用途等方面,已广泛应用于高、中、低浓度的有机废水处理,应用行业涉及造纸、皮革、制糖、酒精、制药、肉类食品加工、合
3、成脂肪酸等。近二十多年来,发展了多种由于处理高浓度有机废水的高效厌氧消化工艺,有厌氧接触工艺、厌氧生物滤池、厌氧流化床反应器、上流式厌氧污泥床反应器、两相厌氧消化系统等。7.2.1 厌氧接触工艺 厌氧接触工艺是在传统的完全混合反应器(Complete Stirred Tank Reactor,简写作 CSTR)的基础上发展而来的,在一个厌氧的完全混合反应器后增加了污泥分离和回流装置,从而使污泥停留时间(SRT)大于水力停留时间(HRT),有效的增加了反应器中的污泥浓度。厌氧接触工艺用于高浓度有机污水,为了强化有机物与池内厌氧污泥的充分接触,必须连续搅拌;同时为了提高处理效率,必须连续进水排水。
4、但这样会造成厌氧污泥的大量流失,因此反应器后要串联沉淀池将厌氧污泥沉淀并回流至厌氧反应器。厌氧接触工艺存在以下缺点:负荷较低,在沉淀池中的固液分离较为困难;受污泥浓度的制约,在高的有机负荷下,厌氧接触工艺也会产生类似好氧活性污泥的污泥膨胀问题。厌氧接触工艺系统较为复杂,反应器需要搅拌装置,运转设备多,管理比较复杂。7.2.2 厌氧流化床反应器 厌氧流化床反应器的内部填充着粒径很小(d=0.5mm 左右)的挂膜介质,依靠在惰性的填料颗粒表面形成的生物膜来保留厌氧污泥,污水污泥的混合、物质的传递依靠使这些带有生物膜的颗粒形成流态来实现。流化床反应器的主要特点归纳如下:流化态最大程度使厌氧污泥与被处
5、理的污水触;由于颗粒与流体相对运动速度高,液膜扩散阻力小,且由于形成的生物膜较薄,传质作用强,因此生物化学过程进行较快,允许污水反应器内有较短的水力停留时间;高的反应器容积负荷可减少反应器容积,同时由于其高度与直径的比例大于其它厌氧反应器,因此可以减少占地面积。但是厌氧流化床反应器存在着几个尚未解决的问题:为了实现良好的流态化并使污泥和填料不致从反应器中流失,必须使生物膜颗粒保持均匀的形状、大小和密度,但这几乎是难以做到的,因此稳定的流态化也难以保证。为取得高的上流速度以保证流态化,流化床反应器需要大量的回流水,这样导致能耗加大,成本上升。该反应器运行管理较为复杂。由于以上原因,流化床反应器至
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工艺
限制150内