《金属结构设计》第四章 受弯构件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《金属结构设计》第四章 受弯构件.ppt》由会员分享,可在线阅读,更多相关《《金属结构设计》第四章 受弯构件.ppt(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4.受弯构件目目 录录 4.4.受弯构件受弯构件4.14.1梁的类型和应用梁的类型和应用4.24.2梁的强度和刚度梁的强度和刚度4.34.3梁的整体稳定梁的整体稳定4.44.4梁的局部稳定梁的局部稳定4.54.5型钢梁的设计型钢梁的设计4.64.6组合梁的设计组合梁的设计4.受弯构件 承受横向荷载的构件称为受弯构件。受弯构件。受弯构件受弯构件包括:实腹式实腹式和格构式格构式两大类,实腹式的受弯构件通常称为梁梁。按制作方法钢梁可分为:型钢梁型钢梁和组合梁组合梁两种(图4-1)。4.14.1梁的类型和应用梁的类型和应用 型钢梁:型钢梁:加工简单,成本较低,因而应优先采用。受轧制条件的限制,热轧型钢
2、的腹板较厚,用钢量较多。组合梁:组合梁:由钢板或型钢连接而成。组合梁的截面组成比较灵活,可使材料在截面上的分布更为合理,节省钢材。图4-1 梁的截面类型 4.受弯构件4.14.1梁的类型和应用(续)梁的类型和应用(续)梁可设计为简支梁、连续梁和悬伸梁等。简支梁的用钢量虽然较多,但由于制造、安装、拆换较方便,而且不受温度变化和支座沉陷的影响,因而得到广泛的应用。梁的设计必须同时满足:承载能力极限状态承载能力极限状态和正常使用极限状态正常使用极限状态。钢梁的承载能力极限状态包括强度、整体稳定和局部稳定钢梁的承载能力极限状态包括强度、整体稳定和局部稳定三个方面。设计时要求在荷载设计值作用下,梁的抗弯
3、强度、抗剪强度、局部承压强度和折算应力均不超过相应的强度设计值;保证梁不会发生整体失稳;同时组成梁的板件不出现局部失稳。正常使用极限状态主要指梁的刚度正常使用极限状态主要指梁的刚度,设计时要求梁具有足够的抗弯刚度,即在荷载标准值作用下,梁的最大挠度不大于钢结构设计规范规定的容许挠度。4.受弯构件4.24.2梁的强度和刚度梁的强度和刚度梁的强度梁的强度 梁的强度梁的强度包括抗弯强度抗弯强度、抗剪强度抗剪强度、局部承压强度局部承压强度和折算应力折算应力,设计时要求在荷载设计值作用下,均不超过钢结构设计规范规定的相应的强度设计值。梁的抗弯强度 作用在梁上的荷载不断增加时,梁的弯曲应力的发展过程可分为
4、三个阶段,以双轴对称工字形截面梁为例说明如下。图4-2 梁正应力的分布 4.受弯构件梁的强度(续)梁的强度(续)弹性工作阶段 荷载较小时,截面上各点的弯曲应力均小于屈服点fy,荷载继续增加,直至边缘纤维应力达到fy(图4-2(b)),相应的弯矩为梁弹性工作阶段的最大弯矩,其值 式中:Wn梁的净截面模量。弹塑性工作阶段 荷载继续增加,截面上、下各有一个高度为a的区域,其应力达到屈服点fy。截面的中间部分区域仍保持弹性(图4-2(c)),此时梁处于弹塑性工作阶段。塑性工作阶段 当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。当弹性核心完全消失(图4-2(d))时,荷载不再增加,而
5、变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。极限弯矩(41)(42)4.受弯构件 梁的强度(续)梁的强度(续)式中:式中:S1n,S2n分别为中和轴以上及以下净截面对中和轴的面积矩;分别为中和轴以上及以下净截面对中和轴的面积矩;Wpn梁的净截面塑性模量,梁的净截面塑性模量,WpnS1nS2n。极限弯矩极限弯矩Mp与弹性最大弯矩与弹性最大弯矩Me之比为之比为 由式(由式(4-34-3)可见,)可见,gF F值只取决于截面的几何形状而与材料的性质无关,称值只取决于截面的几何形状而与材料的性质无关,称为截面形状系数。为截面形状系数。在计算梁的抗弯强度时,考虑截面塑性发展更经济,但若按截面形
6、成塑性铰在计算梁的抗弯强度时,考虑截面塑性发展更经济,但若按截面形成塑性铰进行设计,可能使梁产生的挠度过大,受压翼缘过早失去局部稳定。因此,钢进行设计,可能使梁产生的挠度过大,受压翼缘过早失去局部稳定。因此,钢结构设计规范只是有限制地利用塑性,取截面塑性发展深度结构设计规范只是有限制地利用塑性,取截面塑性发展深度a0.125h0.125h。根据以上分析,梁的抗弯强度按下列公式计算:根据以上分析,梁的抗弯强度按下列公式计算:(4 43 3)单向弯曲时:单向弯曲时:(4 44 4)双向弯曲时:双向弯曲时:(4 45 5)4.受弯构件式中:式中:Mx,My绕绕x轴和轴和y轴的弯矩(对工字形和轴的弯矩
7、(对工字形和H形截面,形截面,x x轴为强轴,轴为强轴,y y轴为轴为 弱轴);弱轴);Wnx,Wny梁对梁对x x轴和轴和y y轴的净截面模量;轴的净截面模量;gx x,gy y截面塑性发展系数(对工字形截面,截面塑性发展系数(对工字形截面,gx1.051.05,gy y1.201.20;对;对 箱形截面,箱形截面,gxgy y1.051.05;对其他截面,可按表;对其他截面,可按表4-14-1采用);采用);f钢材的抗弯强度设计值,按表采用。钢材的抗弯强度设计值,按表采用。为避免梁强度破坏之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度为避免梁强度破坏之前受压翼缘局部失稳,当梁受压翼缘的外伸宽
8、度b b与其与其厚度厚度t t之比大于之比大于 ,但不超过,但不超过 时,应取时,应取gx x1.01.0。需要计算疲劳的梁,按弹性工作阶段进行计算,宜取需要计算疲劳的梁,按弹性工作阶段进行计算,宜取gxgy y1.01.0。对于不直接承受动力荷载的固端梁和连续梁,允许按塑性方法进行设计。考对于不直接承受动力荷载的固端梁和连续梁,允许按塑性方法进行设计。考虑截面内塑性变形的发展和由此引起的内力重分配,塑性铰截面的弯矩应满足下虑截面内塑性变形的发展和由此引起的内力重分配,塑性铰截面的弯矩应满足下式式梁的强度(续)梁的强度(续)(4 46 6)式中:式中:Wpnx梁对梁对x x轴的塑性净截面模量。
9、轴的塑性净截面模量。当梁的抗弯强度不满足设计要求时,增大梁的高度最有效。当梁的抗弯强度不满足设计要求时,增大梁的高度最有效。4.受弯构件 表表4-1 4-1 截面塑性发展系数截面塑性发展系数gx x、gy y值值4.受弯构件 梁的抗剪强度梁的抗剪强度 梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布分别如图布分别如图4-3(a)4-3(a)、(b)(b)所示。截面上的最大剪应力发生在腹板中和轴处。在主所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承
10、载力极限平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算状态。因此,设计的抗剪强度应按下式计算 (4 47 7)式中:式中:VV计算截面沿腹板平面作用的剪力设计值;计算截面沿腹板平面作用的剪力设计值;S S中和轴以上毛截面对中和轴的面积矩;中和轴以上毛截面对中和轴的面积矩;I I毛截面惯性矩;毛截面惯性矩;t tw w腹板厚度;腹板厚度;fv v钢材的抗剪强度设计值,按表采用。钢材的抗剪强度设计值,按表采用。当梁的抗剪强度不满足设计当梁的抗剪强度不满足设计要求时,最有效的办法是加大腹要求时,最有效的办法是加大腹板厚度来增大梁的抗剪强度
11、。板厚度来增大梁的抗剪强度。图图4-3 4-3 腹板剪应力腹板剪应力 4.受弯构件 梁的局部承压强度梁的局部承压强度 当当梁梁的的翼翼缘缘受受有有沿沿腹腹板板平平面面作作用用的的固固定定集集中中荷荷载载(包包括括支支座座反反力力)且且该该荷荷载载处处又又未未设设置置支支承承加加劲劲肋肋(图图4-4(a)4-4(a)),或或受受有有移移动动的的集集中中荷荷载载(如如吊吊车车的的轮轮压压,图图4-4(b)4-4(b))时,应验算腹板计算高度边缘的局部承压强度。)时,应验算腹板计算高度边缘的局部承压强度。图图4-4 4-4 局部压应力局部压应力 4.受弯构件 梁的局部承压强度(续)梁的局部承压强度(
12、续)梁的局部承压强度可按下式计算梁的局部承压强度可按下式计算(4 48 8)式中:式中:FF集中荷载(对动力荷载应考虑动力系数);集中荷载(对动力荷载应考虑动力系数);y集中荷载增大系数(对重级工作制吊车轮压,集中荷载增大系数(对重级工作制吊车轮压,y1.351.35;对其他荷;对其他荷 载,载,y1.0););lz z集中荷载在腹板计算高度边缘的假定分布长度(跨中集中荷载在腹板计算高度边缘的假定分布长度(跨中lza5hy 2hR,梁端,梁端lz za a2.5h2.5hy ya a1 1););a a集中荷载沿梁跨度方向的支承长度(对吊车轮压可取为集中荷载沿梁跨度方向的支承长度(对吊车轮压可
13、取为50mm50mm););h hy y自梁承载的边缘到腹板计算高度边缘的距离;自梁承载的边缘到腹板计算高度边缘的距离;h hR R轨道的高度(无轨道时轨道的高度(无轨道时hR0 0););a a1 1梁端到支座板外边缘的距离(按实际取值,但不得大于梁端到支座板外边缘的距离(按实际取值,但不得大于2.5h2.5hy y)。)。腹板的计算高度腹板的计算高度h h0 0按下列规定采用:按下列规定采用:轧制型钢梁,为腹板在与上、下翼缘相交接处两内弧起点间的距离;轧制型钢梁,为腹板在与上、下翼缘相交接处两内弧起点间的距离;焊接组合梁,为腹板高度;焊接组合梁,为腹板高度;铆接(或高强度螺栓连接)组合梁,
14、为上、下翼缘铆接(或高强度螺栓连接)组合梁,为上、下翼缘与腹板连接的铆钉(或高强度螺栓)线间最近距离。与腹板连接的铆钉(或高强度螺栓)线间最近距离。当计算不满足式(当计算不满足式(4-84-8)时,在固定集中荷载处(包括支座处)应设置支承)时,在固定集中荷载处(包括支座处)应设置支承加劲肋加强,并对支承加劲肋进行计算。对移动集中荷载,则应加大腹板厚度。加劲肋加强,并对支承加劲肋进行计算。对移动集中荷载,则应加大腹板厚度。4.受弯构件 折算应力折算应力 在组合梁的腹板计算高度边缘处,当同时受有较大的弯曲应力在组合梁的腹板计算高度边缘处,当同时受有较大的弯曲应力、剪应力、剪应力和局部压应力和局部压
15、应力c c时,或同时受有较大的弯曲应力时,或同时受有较大的弯曲应力、剪应力、剪应力,时(如连续梁,时(如连续梁的支座处或梁的翼缘截面改变处等),应按下式验算该处的折算应力的支座处或梁的翼缘截面改变处等),应按下式验算该处的折算应力(4 49 9)式中:式中:,c c腹板计算高度边缘同一点上的弯曲正应力、剪应力和局部腹板计算高度边缘同一点上的弯曲正应力、剪应力和局部 压应力,压应力,按式(按式(4-74-7)计算,)计算,c c按式(按式(4-84-8)计算,)计算,按按 下式计算下式计算(4 41010)I Inxnx净截面惯性矩;净截面惯性矩;y y 计算点至中和轴的距离;计算点至中和轴的距
16、离;,c c均以拉应力为正值,压应力为负值;均以拉应力为正值,压应力为负值;b1 1折算应力的强度设计值增大系数(当折算应力的强度设计值增大系数(当,c c异号时,取异号时,取b1 11.21.2;当;当 ,c c同号或同号或c c0 0时,取时,取b1 11.11.1)。)。4.受弯构件梁的刚度梁的刚度(16(16讲讲)梁的刚度验算即为梁的挠度验算。梁的刚度不足,将会产生较大的变形。因梁的刚度验算即为梁的挠度验算。梁的刚度不足,将会产生较大的变形。因此,应按下式验算梁的刚度此,应按下式验算梁的刚度 (4 41111)式中:式中:v 荷载标准值作用下梁的最大挠度;荷载标准值作用下梁的最大挠度;
17、v梁的容许挠度值,钢结构设计规范根梁的容许挠度值,钢结构设计规范根 据实践经验规定的容许挠度值见规范据实践经验规定的容许挠度值见规范.计算梁的挠度计算梁的挠度v时,取用的荷载标准值应与规范规定的容许挠度值时,取用的荷载标准值应与规范规定的容许挠度值 v 相相对应。例如对吊车梁,挠度对应。例如对吊车梁,挠度v应按自重和起重量最大的一台吊车计算;对楼盖或应按自重和起重量最大的一台吊车计算;对楼盖或工作平台梁,应分别验算全部荷载作用下产生的挠度和仅有可变荷载作用下产生工作平台梁,应分别验算全部荷载作用下产生的挠度和仅有可变荷载作用下产生的挠度。的挠度。4.受弯构件4.34.3梁的整体稳定梁的整体稳定
18、梁整体稳定的概念梁整体稳定的概念 梁主要用于承受弯矩,为了充分发挥材料的强度,其截面通常设计成高而窄梁主要用于承受弯矩,为了充分发挥材料的强度,其截面通常设计成高而窄的形式。如图的形式。如图4-54-5所示的工字形截面梁,荷载作用在最大刚度平面内。当荷载较所示的工字形截面梁,荷载作用在最大刚度平面内。当荷载较小时,仅在弯矩作用平面内弯曲,当荷载增大到某一数值后,梁在弯矩作用平面小时,仅在弯矩作用平面内弯曲,当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象内弯曲的同时,将突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象称为梁的弯
19、扭屈曲或整体失稳。梁维持其稳定平衡状态所承受的最大弯矩,称为称为梁的弯扭屈曲或整体失稳。梁维持其稳定平衡状态所承受的最大弯矩,称为临界弯矩。临界弯矩。图图4-5 4-5 梁的整体失稳梁的整体失稳4.受弯构件梁整体稳定的概念(续梁整体稳定的概念(续1 1)横向荷载的临界值和它沿梁高的作用位置有关。横向荷载的临界值和它沿梁高的作用位置有关。荷荷载载作作用用在在上上翼翼缘缘时时,如如图图4-6(a)4-6(a)所所示示,在在梁梁产产生生微微小小侧侧向向位位移移和和扭扭转转的的情情况况下下,荷荷载载F将将产产生生绕绕剪剪力力中中心心的的附附加加扭扭矩矩Fe e,它它将将对对梁梁侧侧向向弯弯曲曲和和扭扭
20、转转起起促促进进作用,使梁加速丧失整体稳定。作用,使梁加速丧失整体稳定。当当荷荷载载F作作用用在在梁梁的的下下翼翼缘缘时时(图图5-6(b)5-6(b)),它它将将产产生生反反方方向向的的附附加加扭扭矩矩Fe e,有有利利于于阻阻止止梁梁的的侧侧向向弯弯曲曲扭扭转转,延延缓缓梁梁丧丧失失整整体体稳稳定定。后后者者的的临临界界荷荷载载(或或临临界弯矩)将高于前者。界弯矩)将高于前者。图图4-6 4-6 荷载位置对整体稳定的影响荷载位置对整体稳定的影响4.受弯构件梁整体稳定的概念(续梁整体稳定的概念(续2 2)双轴对称工字形截面简支梁的临界弯矩为:双轴对称工字形截面简支梁的临界弯矩为:式中:式中:
21、EIy侧向抗弯刚度;侧向抗弯刚度;GIt抗扭刚度;抗扭刚度;l1 1梁受压翼缘的自由长度(受压翼缘侧向支承点梁受压翼缘的自由长度(受压翼缘侧向支承点 之间的距离);之间的距离);EI翘曲刚度;翘曲刚度;b梁的侧扭屈曲系数,与荷载类型、梁端支承方梁的侧扭屈曲系数,与荷载类型、梁端支承方 式以及横向荷载作用位式以及横向荷载作用位 置等有关,纯弯曲时:置等有关,纯弯曲时:(4 41212)单轴对称截面简支梁(图单轴对称截面简支梁(图4-74-7)的临界弯矩为()的临界弯矩为(4 41313):图图4-7 4-7 单轴对称截面单轴对称截面 式中:式中:by y单轴对称截面的一种几何特性,当为双轴对称时
22、,单轴对称截面的一种几何特性,当为双轴对称时,by y0 0;a横向荷载作用点与剪切中心之间的距离,荷载作用点在剪切中心以下横向荷载作用点与剪切中心之间的距离,荷载作用点在剪切中心以下 时,取正值,反之取负值;时,取正值,反之取负值;C C1 1,C C2 2,C C3 3根据荷载类型而定的系数。根据荷载类型而定的系数。4.受弯构件梁整体稳定的概念(续梁整体稳定的概念(续3 3)由临界弯矩由临界弯矩Mcr的计算公式,可总结出如下规律:的计算公式,可总结出如下规律:梁的侧向抗弯刚度梁的侧向抗弯刚度EIy、抗扭刚度、抗扭刚度GIt越大,临界弯矩越大,临界弯矩Mcr越大;越大;梁受压翼缘的自由长度梁
23、受压翼缘的自由长度l1 1越大,临界弯矩越大,临界弯矩Mcr越小;越小;荷载作用于下翼缘比作用于上翼缘的临界弯矩荷载作用于下翼缘比作用于上翼缘的临界弯矩Mcr大。大。4.受弯构件梁整体稳定的计算梁整体稳定的计算 为保证梁的整体稳定或增强梁抗整体失稳的能力,通为保证梁的整体稳定或增强梁抗整体失稳的能力,通常在梁上设置有刚性铺板和平面支撑等。常在梁上设置有刚性铺板和平面支撑等。规范规定,当符合下列情况之一时,梁的整体稳定可规范规定,当符合下列情况之一时,梁的整体稳定可得到保证,不必计算。得到保证,不必计算。有刚性铺板密铺在梁的受压翼缘上并与其牢固连接,有刚性铺板密铺在梁的受压翼缘上并与其牢固连接,
24、能阻止梁受压翼缘的侧向位移。能阻止梁受压翼缘的侧向位移。H型钢或工字形等截面简支梁受压翼缘的自由长度型钢或工字形等截面简支梁受压翼缘的自由长度l1 1与其宽度与其宽度b1 1之比不超过表之比不超过表4-24-2所规定的数值。所规定的数值。箱形截面简支梁,其截面尺寸箱形截面简支梁,其截面尺寸(图(图4-84-8)满足满足h/b/b0 066,且,且l1 1/b/b0 09595(235/235/fy y)。)。表表4-2 4-2 工字形等截面简支梁不需计算整体稳定性的最大工字形等截面简支梁不需计算整体稳定性的最大l1 1/b/b1 1值值跨中无侧向支承,荷载作用在跨中无侧向支承,荷载作用在跨中有
25、侧向支承,不论荷载作用于何处跨中有侧向支承,不论荷载作用于何处上翼缘上翼缘下翼缘下翼缘图图4-8 4-8 箱形截面箱形截面4.受弯构件梁整体稳定的计算(续梁整体稳定的计算(续1 1)当不满足前述不必计算整体稳定条件时,应对梁的整体稳定进行计算,即使当不满足前述不必计算整体稳定条件时,应对梁的整体稳定进行计算,即使 或写成规范采用的形式或写成规范采用的形式 (4-144-14)式中:式中:Mx绕强轴作用的最大弯矩;绕强轴作用的最大弯矩;Wx按受压纤维确定的梁毛截面模量;按受压纤维确定的梁毛截面模量;fb b=crcr/fy y梁的整体稳定系数。梁的整体稳定系数。现以受纯弯曲的双轴对称工字形截面简
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金属结构设计 金属结构设计第四章 受弯构件 金属结构 设计 第四 构件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内