二元函数的极值汇总.ppt
《二元函数的极值汇总.ppt》由会员分享,可在线阅读,更多相关《二元函数的极值汇总.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、返回返回上页上页下页下页目录目录第四节第四节 二元函数的极值二元函数的极值 第六章第六章(Absolute maximum and minimum values)一、二元函数的极值一、二元函数的极值二、条件极值与拉格朗日乘数法二、条件极值与拉格朗日乘数法三、小结与思考练习三、小结与思考练习2/26/20231返回返回上页上页下页下页目录目录一、一、二元函数的极值二元函数的极值定义定义 若函数则称函数在该点取得极大值(极小值).例如例如:在点(0,0)有极小值;在点(0,0)有极大值;在点(0,0)无极值.极大值和极小值统称为极值,使函数取得极值的点称为极值点.的某邻域内有2/26/20232返
2、回返回上页上页下页下页目录目录说明说明:使偏导数都为 0 的点称为驻点.例如例如,函数偏导数,证证:据一元函数极值的必要条件可知定理结论成立.取得极值,取得极值取得极值 但驻点不一定是极值点.有驻点(0,0),但在该点不取极值.且在该点取得极值,则有存在故定理定理1(必要条件必要条件)2/26/20233返回返回上页上页下页下页目录目录时,具有极值的某邻域内具有一阶和二阶连续偏导数,且令则:1)当A0 时取极小值.2)当3)当这个定理不加证明这个定理不加证明.时,没有极值.时,不能确定,需另行讨论.若函数定理定理2(充分条件充分条件)2/26/20234返回返回上页上页下页下页目录目录2/26
3、/20235返回返回上页上页下页下页目录目录提示提示:第一步 求驻点.第二步 判别.时,具有极值 1)当A0 时取极小值.2)当3)当时,没有极值.时,不能确定,需另行讨论.2/26/20236返回返回上页上页下页下页目录目录例.求函数解解:第一步第一步 求驻点求驻点.得驻点:(1,0),(1,2),(3,0),(3,2).第二步第二步 判别判别.在点(1,0)处为极小值;解方程组的极值.求二阶偏导数机动 目录 上页 下页 返回 结束 2/26/20237返回返回上页上页下页下页目录目录在点(3,0)处不是极值;在点(3,2)处为极大值.在点(1,2)处不是极值;机动 目录 上页 下页 返回
4、结束 2/26/20238返回返回上页上页下页下页目录目录驻点驻点ABCAC B2判判 定定例例 求函数求函数 f(x,y)=x3 y3+3x2+3y2 9x 的极值。的极值。极大值极大值 31 60 12(3,2)无极值无极值60 12(3,0)无极值无极值 6012(1,2)极小值极小值 56012(1,0)2/26/20239返回返回上页上页下页下页目录目录例.讨论函数讨论函数及是否取得极值.解解:显然(0,0)都是它们的驻点,在(0,0)点邻域内的取值,因此 z(0,0)不是极值.因此为极小值.正正负负0在点(0,0)并且在(0,0)都有 可能为机动 目录 上页 下页 返回 结束 2/
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 函数 极值 汇总
限制150内