二次函数解析式的求法1PPT课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《二次函数解析式的求法1PPT课件.ppt》由会员分享,可在线阅读,更多相关《二次函数解析式的求法1PPT课件.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数二次函数解析式解析式的求法的求法知识要点知识要点:二次函数解析式常见的三种表达形式及求法二次函数解析式常见的三种表达形式及求法:(1)一般式:一般式:根据抛物线过三点坐标求解析式根据抛物线过三点坐标求解析式设解析式为设解析式为(2)顶点式:顶点式:已知顶点和另一点坐标求解析式已知顶点和另一点坐标求解析式设解析式设解析式(3)两根式:两根式:已知与已知与X轴的两交点坐标及另一点坐轴的两交点坐标及另一点坐标求解析式标求解析式设解析式设解析式y=a(x-x1)(x-x2)二次函数的解析式二次函数的解析式(1)一般式一般式(2)顶点式顶点式(3)两根式两根式二二,例题讲解例题讲解:1,若抛物线
2、若抛物线y=x2-4x+c(1)过点过点A(1,3)求求c(2)顶点在顶点在X轴上求轴上求c(1)点在抛物线上点在抛物线上,将将A(1,3)代入解析式代入解析式 求得求得 c=6(2)X轴上的点的特点轴上的点的特点b2-4ac=0或配方或配方求得求得:c=42,若抛物线若抛物线 y=ax2+2x+c的对称轴是直线的对称轴是直线 x=2,且函数的,且函数的最大值最大值是是-3,求求 a,c分析分析:实质知道顶点坐标实质知道顶点坐标(2,-3)且且 为最高点抛物线开口向下为最高点抛物线开口向下解解:解得解得3,根据下列条件求二次函数解析式根据下列条件求二次函数解析式(1)抛物线过点抛物线过点(0,
3、0)(1,2)(2,3)三点三点解法解法:抛物线过一般三点抛物线过一般三点 通常设一般式将三点坐标代入通常设一般式将三点坐标代入 求出求出a,b,c的值的值解解:设二次函数解析式为设二次函数解析式为:y=ax2+bx+c则则解得:解得:所求的抛物线解析式为所求的抛物线解析式为:(2)抛物线顶点是抛物线顶点是(2,-1)且过点且过点(-1,2)解法解法(一一)可设一般式可设一般式列方程组求列方程组求a,b,c解法解法(二二)可设可设顶点式顶点式解解:抛物线的顶点为抛物线的顶点为(2,-1)设解析式为设解析式为:y=a(x-2)2-1把点把点(-1,2)代入代入 a(-1-2)2-1=2(3)图象
4、与图象与X轴交于轴交于(2,0)(-1,0)且过点且过点(0,-2)解法解法(一一)可设可设一般式一般式解法解法(二二)可设可设两根式两根式解解:抛物线与抛物线与X轴交于点轴交于点(2,0)(-1,0)设解析式为设解析式为:y=a(x-2)(x+1)把点把点(0,-2)代入代入a(0-2)(0+1)=-2解得解得 a=1 y=(x-2)(x+1)即即:y=x2-x-2(4)图象与图象与X轴交于轴交于(2,0)(3,0)且函数最小值是且函数最小值是-3分析分析:函数最小值函数最小值:-3即顶点纵坐标即顶点纵坐标 但隐藏着抛物线开口向上这个条件但隐藏着抛物线开口向上这个条件可设一般式来解可设一般式
5、来解.可设两根式来解可设两根式来解求得的解析式为求得的解析式为:y=12x2-60 x+724,练习练习:求下列二次函数解析式求下列二次函数解析式(1)抛物线抛物线 y=x2-5(m+1)x+2m的对称轴是的对称轴是y轴轴所求的解析式为所求的解析式为:y=x2-2(2)y=(m-3)x2+mx+m+3的最大值是的最大值是0(3)抛物线抛物线y=ax2+bx+c的顶点是的顶点是(-1,2),且且a+b+c+2=0(3)y=ax2+bx+c且且a:b:c=2:3:4,函数有最函数有最 小值小值解得解得:y=4x2+6x+85,完成练习完成练习:(求下列二次函数解析式)(求下列二次函数解析式)(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 解析 求法 PPT 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内