理论力学1PPT学习教案.pptx
《理论力学1PPT学习教案.pptx》由会员分享,可在线阅读,更多相关《理论力学1PPT学习教案.pptx(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、会计学1理论理论(lln)力学力学1第一页,共66页。第11章 达朗贝尔原理(yunl)及其应用 引入惯性力的概念(ginin),应用达朗贝尔原理,将静力学中求解平衡问题的方法用于分析和解决动力学问题。这种方法称为“动静法”。“动”代表研究对象是动力学问题;“静”代表研究问题所用的方法是静力学方法。达朗贝尔原理虽然与动力学普遍定理具有不同的思路,但却获得了与动量定理、动量矩定理形式上等价的动力学方程(fngchng),并在某些应用领域也是等价的。达朗贝尔原理提供了有别于动力学普遍定理的新方法,尤其适用于受约束质点系统求解动约束力和动应力等问题。因此在工程技术中有着广泛应用,并且为“分析力学”奠
2、定了理论基础。第1页/共66页第二页,共66页。惯性力与达朗贝尔原理(yunl)结论(jiln)与讨论 惯性力系的简化(jinhu)达朗贝尔原理的应用示例 参考性例题第11章 达朗贝尔原理及其应用 第5页/共66页第六页,共66页。在惯性参考系Oxyz中,设一非自由质点的质量为m,加速度为a,在主动力、约束力作用下运动。由牛顿(ni dn)第二定律,有 若将上式左端的(dund)ma 移至右端,则有 质点(zhdin)的惯性力与达朗贝尔原理第6页/共66页第七页,共66页。可以假想FI是一个力,它的大小等于质点的质量与加速度的乘积,方向与质点加速度的方向相反。因其与质点的质量有关(yugun)
3、,故称为达朗贝尔惯性力,简称惯性力。上述方程形式(xngsh)上是一静力平衡方程。可见,由于引入了达朗贝尔惯性力,质点动力学问题转化为形式(xngsh)上的静力平衡问题。第7页/共66页第八页,共66页。假想在运动的质点上加上惯性力,则可认为作用(zuyng)在质点上的主动力、约束力以及惯性力,在形式上组成平衡力系。此即达朗贝尔原理,亦即动静法。动静(dng jing)法平衡方程的矢量形式 动静法平衡(pnghng)方程的投影形式 惯性力与达朗贝尔原理 质点的惯性力与达朗贝尔原理第8页/共66页第九页,共66页。应用上述方程时,除了(ch le)要分析主动力、约束力外,还必须分析惯性力,并假想
4、地加在质点上。其余过程与静力学完全相同。动静法方程的矢量(shling)形式 动静法方程的投影(tuyng)形式 需要注意的是,惯性力只是为了应用静力学方法求解动力学问题而假设的虚拟力,所谓的平衡方程,仍然反映了真实力与运动之间的关系。质点的惯性力与达朗贝尔原理 惯性力与达朗贝尔原理第9页/共66页第十页,共66页。离心离心(lxn)(lxn)调速器调速器已知:m1球A、B 的质量;m2重锤C 的质量;l杆件的长度(chngd);O1 y1轴的旋转角速度。求:的关系(gun x)。BACO1x1y1llll解:1.分析受力:以球 B(或A)和重锤C为研究对象,分析所受的主动力和约束力BFT1F
5、T2CFT3FT1m1 gm2 g第10页/共66页第十一页,共66页。2.分析(fnx)运动:球绕 O1y1轴作等速圆周(yunzhu)运动,惯性力方向与法向加速度方向相反,其值为FIm1l 2sin 重锤静止(jngzh),无惯性力。3.应用动静法:m1球A、B 的质量;m2重锤C 的质量;l杆件的长度;O1 y1轴的旋转角速度。CBm1 gm2 gFT1FT2FT3FT1FI对于重锤 C对于球 B:第11页/共66页第十二页,共66页。解:解:CBm1 gm2 gFT1FT2FT3FT1FI第12页/共66页第十三页,共66页。将质点(zhdin)的达朗贝尔原理推广至质点(zhdin)系
6、。考察由n个质点(zhdin)组成的非自由质点(zhdin)系,对每个质点(zhdin)都施加惯性力,则n个质点(zhdin)上所受的全部主动力、约束力和假想的惯性力均形成空间一般力系。对于(duy)每个质点,达朗贝尔原理均成立,即认为作用在质点上的主动力、约束力和惯性力组成形式上的平衡力系,则由n个质点组成的质点系上的主动力、约束力和惯性力,也组成形式上的平衡力系。质点系的达朗贝尔原理(yunl)惯性力与达朗贝尔原理 质点系的达朗贝尔原理 第13页/共66页第十四页,共66页。为方便起见,将真实力分为内力和外力(wil)(各自包含主动力和约束力)。主矢、主矩同时等于零可以表示为 注意到质点系
7、中各质点间的内力总是(zn sh)成对出现,且等值、反向,故上式中 上述(shngsh)方程变为:第14页/共66页第十五页,共66页。质点系的达朗贝尔原理(yunl)这两个矢量式可以(ky)写出六个投影方程。根据达朗贝尔原理(yunl),只要在质点系上施加惯性力,就可以应用上述方程求解动力学问题,这就是质点系的动静法。惯性力与达朗贝尔原理第15页/共66页第十六页,共66页。惯性力系的简化(jinhu)第11章 达朗贝尔原理(yunl)及其应用 惯性力系的主矢与主矩 刚体平移时惯性力系的简化(jinhu)结果 刚体作定轴转动时惯性力系的简化结果 刚体作平面运动时惯性力系的简化结果 第16页/
8、共66页第十七页,共66页。惯性力系的主矢与主矩 所有(suyu)惯性力组成的力的系统,称为惯性力系。与一般力系相似,惯性力系中所有(suyu)惯性力的矢量和称为惯性力系的主矢:惯性力系中所有力向同一点简化,所得力偶(l u)的力偶(l u)矩矢量的矢量和,称为惯性力系的主矩:惯性力系的主矢与刚体的运动形式无关;惯性力系的主矩与刚体的运动形式有关。第17页/共66页第十八页,共66页。惯性力系的简化(jinhu)刚体平移(pn y)时惯性力系的简化结果 刚体平移时,由于同一(tngy)瞬时刚体内各质点的加速度都相同,惯性力系为平行力系,所以,惯性力系简化结果为通过质心C的合力,用FIR表示:其
9、中m为刚体的质量;aC为刚体的质心加速度。刚体平移时惯性力系的简化结果 第18页/共66页第十九页,共66页。这里仅讨论刚体有质量对称面且转轴与质量对称面垂直(chuzh)的情形。这种情形下,可以先将惯性力系简化在质量对称面内,然后再进一步简化。刚体作定轴转动时惯性力系的简化(jinhu)结果 第19页/共66页第二十页,共66页。刚体作定轴转动时惯性力系的简化(jinhu)结果 设刚体的质量为设刚体的质量为m m;刚体对轴;刚体对轴OO的转动惯量为的转动惯量为J O J O;角速度与角加速度分别为;角速度与角加速度分别为与与。对称。对称(duchn)(duchn)平面上第平面上第i i个质点
10、的质量为个质点的质量为mimi;至轴;至轴OO的距离为的距离为ri ri;切向加速度和法向加速度分别为;切向加速度和法向加速度分别为atiati和和ani ani,相应的惯性力分别为,相应的惯性力分别为F tIiF tIi和和F nIi F nIi。所有质点的惯性力组成平面力系。所有质点的惯性力组成平面力系。第20页/共66页第二十一页,共66页。再将平面惯性力系向点O简化,得一力(yl)和一力(yl)偶。因为所有质点的法向惯性力都通过O点,所以所有质点法向惯性力对O点之矩的和等于零:于是,刚体(gngt)作定轴转动时惯性力系向点O简化,得到 刚体(gngt)作定轴转动时惯性力系的简化结果 第
11、21页/共66页第二十二页,共66页。上述结果表明,有质量对称面的刚体作定轴转动,且转轴垂直于对称平面时,其惯性力系向轴心(zhu xn)简化的结果为对称面内的一力和一力偶。力(通过(tnggu)轴O)大小等于刚体质量与质心加速度的乘积,方向与质心加速度相反。力偶的力偶矩等于惯性力系对转轴的主矩,其大小为刚体对转轴的转动惯量与角加速度的乘积,方向(fngxing)与角加速度的方向(fngxing)相反。刚体作定轴转动时惯性力系的简化结果 第22页/共66页第二十三页,共66页。刚体作定轴转动时惯性力系的简化(jinhu)结果 讨论(toln):1)转轴通过刚体的质心,角加速度 不等于零,惯性力
12、系的简化成一个(y)力偶:2)刚体作匀角速度运动,角加速度 等于零,转轴不通过刚体的质心,惯性力系的简化成一个力:惯性力大小:第23页/共66页第二十四页,共66页。在工程构件中,作平面运动的刚体(gngt)往往都有质量对称面,而且刚体(gngt)在平行于这一平面的平面内运动。因此,仍先将惯性力系简化为对称面内的平面力系,然后再作进一步简化。设刚体(gngt)的质量为m,对质心轴的转动惯量为JC,角速度和角加速度分别为和a。刚体作平面运动(yndng)时惯性力系的简化结果 第24页/共66页第二十五页,共66页。运动学分析(fnx)的结果表明,平面图形的运动可以分解为随质心的平移和绕质心的转动
13、。因此,简化到对称平面内的惯性力系由两部分组成:刚体随质心平移的惯性力系简化为一通过(tnggu)质心的力;绕质心转动的惯性力系简化为一力偶。该力和力偶分别为 惯性力系的简化(jinhu)刚体作平面运动时惯性力系的简化结果 第25页/共66页第二十六页,共66页。惯性力系的简化(jinhu)刚体(gngt)作平面运动时惯性力系的简化结果 上述简化结果表明,有质量对称面的刚体作平面运动,且运动平面平行于对称平面时,其惯性力系向质心(zh xn)C简化的结果为对称面内的一力和一力偶。这一力(通过质心的力)大小为刚体质量与质心加速度的乘积,方向与质心加速度相反;这一力偶的力偶矩等于惯性力系对质心C的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理论 力学 PPT 学习 教案
限制150内