【数学】315《空间向量的数量积》课件(苏教版选修2-1).ppt
《【数学】315《空间向量的数量积》课件(苏教版选修2-1).ppt》由会员分享,可在线阅读,更多相关《【数学】315《空间向量的数量积》课件(苏教版选修2-1).ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间向量的数量积运算空间向量的数量积运算教学过程一、几个概念一、几个概念1 1)两个向量的夹角的定义两个向量的夹角的定义O OA AB B2 2)两个向量的数量积)两个向量的数量积注意:注意:两个向量的数量积是数量,而不是向量两个向量的数量积是数量,而不是向量.零向量与任意向量的数量积等于零。零向量与任意向量的数量积等于零。3 3)射影)射影BAA1B1注意:是轴注意:是轴l l上的正射影上的正射影A A1 1B B1 1是一个可正可负的实数,是一个可正可负的实数,它的符号代表向量与它的符号代表向量与l l的方向的相对关系,大小代表的方向的相对关系,大小代表在在l l上射影的长度。上射影的长度
2、。4)4)空间向量的数量积性质空间向量的数量积性质 注意:注意:性质性质2 2)是证明两向量垂直的依据;)是证明两向量垂直的依据;性质性质3 3)是求向量的长度(模)的依据;)是求向量的长度(模)的依据;对于非零向量对于非零向量 ,有:,有:5)5)空间向量的数量积满足的运算律空间向量的数量积满足的运算律 注意:注意:数量积不满足结合律数量积不满足结合律二、二、课堂练习课堂练习ADFCBE三三、典型例题典型例题例例1:已知:已知m,n是平面是平面 内的两条相交直线,直线内的两条相交直线,直线l与与 的交点为的交点为B,且,且lm,ln,求证:,求证:l 分析:由定义可知,只需证分析:由定义可知
3、,只需证l l与平面内与平面内任意直线任意直线g g垂直。垂直。n nm mgg gmnll l要证要证l l与与g g垂直,只需证垂直,只需证l lg g0 0而而m m,n n不平行,由共面向量定理知,不平行,由共面向量定理知,存在唯一的有序实数对存在唯一的有序实数对(x,y)(x,y)使得使得 g=xm+yng=xm+yn 要证要证l lg g0,0,只需只需l l g=g=xlxlm+ylm+yln=0n=0而而l lm m0 0,l ln n0 0故故 l lg g0 0三三、典型例题典型例题例例1:已知:已知m,n是平面是平面 内的两条相交直线,直线内的两条相交直线,直线l与与 的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 空间向量的数量积 315 空间 向量 数量 课件 苏教版 选修
限制150内