昆明汽车芯片项目申请报告模板范本.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《昆明汽车芯片项目申请报告模板范本.docx》由会员分享,可在线阅读,更多相关《昆明汽车芯片项目申请报告模板范本.docx(138页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、泓域咨询/昆明汽车芯片项目申请报告目录目录第一章第一章 市场预测市场预测.7一、功率半导体:电能转换与电路控制的核心器件,关注 IGBT、SiC 器件的增量机遇.7二、汽车“三化”推动汽车电子规模不断扩张.12三、汽车“三化”驱动成长,国产替代前景可期.15第二章第二章 项目总论项目总论.17一、项目名称及项目单位.17二、项目建设地点.17三、可行性研究范围.17四、编制依据和技术原则.18五、建设背景、规模.18六、项目建设进度.20七、环境影响.20八、建设投资估算.20九、项目主要技术经济指标.21主要经济指标一览表.21十、主要结论及建议.23第三章第三章 项目背景及必要性项目背景及
2、必要性.24一、CMOS:汽车智能化程度与传感器数量成正比,CMOS 兼具成本、性能优势,份额占比不断提高.24二、我国汽车总销量趋于平稳,但新能源车渗透率快速提高.28泓域咨询/昆明汽车芯片项目申请报告三、MCU:集成度提高是发展趋势,电池管理系统/整车控制应用拉动需求增长.31四、夯实工业高质量发展基础.33第四章第四章 建筑工程说明建筑工程说明.35一、项目工程设计总体要求.35二、建设方案.35三、建筑工程建设指标.37建筑工程投资一览表.37第五章第五章 项目选址分析项目选址分析.39一、项目选址原则.39二、建设区基本情况.39三、持续扩大有效投资.42四、狠抓招商引资工作.42五
3、、项目选址综合评价.43第六章第六章 法人治理法人治理.44一、股东权利及义务.44二、董事.51三、高级管理人员.56四、监事.59第七章第七章 SWOT 分析分析.61一、优势分析(S).61二、劣势分析(W).63泓域咨询/昆明汽车芯片项目申请报告三、机会分析(O).63四、威胁分析(T).65第八章第八章 环境保护方案环境保护方案.69一、编制依据.69二、环境影响合理性分析.69三、建设期大气环境影响分析.70四、建设期水环境影响分析.74五、建设期固体废弃物环境影响分析.74六、建设期声环境影响分析.74七、建设期生态环境影响分析.76八、清洁生产.77九、环境管理分析.78十、环
4、境影响结论.79十一、环境影响建议.79第九章第九章 节能方案说明节能方案说明.81一、项目节能概述.81二、能源消费种类和数量分析.82能耗分析一览表.82三、项目节能措施.83四、节能综合评价.84第十章第十章 建设进度分析建设进度分析.86一、项目进度安排.86泓域咨询/昆明汽车芯片项目申请报告项目实施进度计划一览表.86二、项目实施保障措施.87第十一章第十一章 技术方案分析技术方案分析.88一、企业技术研发分析.88二、项目技术工艺分析.90三、质量管理.92四、设备选型方案.93主要设备购置一览表.93第十二章第十二章 投资方案分析投资方案分析.95一、投资估算的依据和说明.95二
5、、建设投资估算.96建设投资估算表.98三、建设期利息.98建设期利息估算表.98四、流动资金.100流动资金估算表.100五、总投资.101总投资及构成一览表.101六、资金筹措与投资计划.102项目投资计划与资金筹措一览表.103第十三章第十三章 项目经济效益分析项目经济效益分析.104一、经济评价财务测算.104泓域咨询/昆明汽车芯片项目申请报告营业收入、税金及附加和增值税估算表.104综合总成本费用估算表.105固定资产折旧费估算表.106无形资产和其他资产摊销估算表.107利润及利润分配表.109二、项目盈利能力分析.109项目投资现金流量表.111三、偿债能力分析.112借款还本付
6、息计划表.113第十四章第十四章 风险分析风险分析.115一、项目风险分析.115二、项目风险对策.117第十五章第十五章 项目总结分析项目总结分析.120第十六章第十六章 附表附表.122主要经济指标一览表.122建设投资估算表.123建设期利息估算表.124固定资产投资估算表.125流动资金估算表.126总投资及构成一览表.127项目投资计划与资金筹措一览表.128营业收入、税金及附加和增值税估算表.129泓域咨询/昆明汽车芯片项目申请报告综合总成本费用估算表.129固定资产折旧费估算表.130无形资产和其他资产摊销估算表.131利润及利润分配表.132项目投资现金流量表.133借款还本付
7、息计划表.134建筑工程投资一览表.135项目实施进度计划一览表.136主要设备购置一览表.137能耗分析一览表.137本报告为模板参考范文,不作为投资建议,仅供参考。报告产业背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告可用于学习交流或模板参考应用。泓域咨询/昆明汽车芯片项目申请报告第一章第一章 市场预测市场预测一、功率半导体:电能转换与电路控制的核心器件,关注功率半导体:电能转换与电路控制的核心器件,关注 IGBT、SiC 器件的增量机遇器件的增量机遇功率半导体是电能转换与电路控制的核心器件。主要功能为改变电路中的电
8、压、电流、频率、导通状态等物理特性,以实现对电能的管理。功率半导体在电子电路中起到功率转换、功率放大、功率开关、线路保护和整流等作用,广泛应用于汽车、工业控制、轨道交通、消费电子、发电与配电、移动通讯等电力电子领域,其实现电力转换的核心目标是提高能量转换率、减少功率损耗。功率半导体从早起简单的二极管向高性能、集成化方向发展。按类别划分,功率半导体可分为功率器件和功率 IC 两大类,其中功率器件主要包括二极管、晶体管和晶闸管,晶体管根据应用领域和制程不同又可分为 IGBT、MOSFET 和双极型晶体管等;功率 IC 属于模拟 IC,包含电源管理 IC、驱动 IC、AC/DC 和 DC/DC 等。
9、为满足更广泛的应用需求和复杂的应用环境,器件设计及制造难度逐渐提高。功率半导体器件根据不同的器件特性分别应用于不同应用领域,二极管、晶闸管等器件生产工艺相对简单,在中低端领域大量使用;IGBT、MOSFET 等器件更多应用于高压、高可靠性领域,器件结构相对复杂并且生产工泓域咨询/昆明汽车芯片项目申请报告艺门槛较高,成本较高,在新能源汽车、轨道交通、工业变频等领域广泛使用。功率半导体下游应用广泛,几乎涵盖所有电子制造业。功率半导体的主要作用是电力转换和功率控制,核心目标为提高能量转换效率并减少功耗,其下游应用广泛,几乎涵盖所有电子制造业。从下游应用领域的占比来看,汽车是功率半导体最主要的下游应用
10、领域,2019年全球功率半导体细分市场规模占比从高到低依次为:汽车(35%)、工业(27%)、消费电子(13%)和其他(25%)领域;国内市场方面,2019 年汽车、消费电子、工业电源、电力、通信等其他领域占功率半导体下游应用比重分别为 27%、23%、19%、15%和 16%。功率半导体市场结构:电源管理 IC、MOSFET 和 IGBT 位列前三。从市场结构来看,电源管理 IC、MOSFET 和 IGBT 为我国功率半导体占比最高的三个分支。根据 IHS 数据,截至 2018 年,我国电源管理 IC市场规模为 84.3 亿美元,份额占比达 61%,MOSFET 和 IGBT 份额分别为 2
11、0%和 14%,三者占比合计达 95%。近几年,受益下游消费电子、通讯行业和新能源汽车的快速发展,电源管理 IC 市场维持稳健增长态势,而未来随着新能源汽车行业快速发展,IGBT 和 MOSFET 有望步入快速发展期。而在功率器件方面,MOSFET、功率二极管和 IGBT 是功率器件中最重要的三个细分领域。从市场份额看,根据 Yole 数据,2017 年泓域咨询/昆明汽车芯片项目申请报告全球 MOSFET 规模占功率器件市场的 35.4%,位列第一,功率二极管和IGBT 市场份额分别为 31.3%和 25.0%,分列第二、三位。汽车是功率最主要的下游应用领域,新能源汽车驱动功率市场发展。从下游
12、应用领域看,汽车是功率半导体最主要的下游应用领域,2019 年细分市场规模占比达 35%。随着社会经济的快速发展及技术工艺的不断进步,新能源汽车及充电桩、智能装备制造、物联网、新能源发电、轨道交通等新兴应用领域逐渐成为功率半导体的重要应用市场,带动功率半导体需求快速增长。以新能源汽车为例,电驱系统是新能源汽车的动力源,相当于传统汽车的发动机和变速箱,是新能源汽车的核心部件。随着新能源汽车逐步渗透,对应功率半导体市场规模也有望迎来快速增长。根据 Omdia 统计,预计 2024 年功率半导体全球市场规模将达到 538 亿美元,中国作为全球最大的功率半导体消费国,预计 2024 年市场规模达到 1
13、97 亿美元,占全球场比重为 36.6%。IGBT是工控领域的核心。IGBT(InsulatedGateBipolarTransistor)全称为绝缘栅双极晶体管,结构上由 BJT 和 MOSFET 组合而成,兼具 MOSFET 输入阻抗高、控制功率小、驱动电路简单、开关速度快和 BJT 通态电流大、导通压降低、损耗小等优点,是未来功率半导体应用的主要发展方向之一。IGBT 是一个非通即断的开关器件,通过栅源极电压的变化控制其关断状态,能泓域咨询/昆明汽车芯片项目申请报告够根据信号指令来调节电压、电流、频率、相位等,以实现精准调控的目的,是能量变换与传输的核心器件。行业格局:英飞凌保持领先,国
14、内企业合计市场份额较低。根据Omdia 统计,全球 IGBT 市场竞争格局较为集中,2019 年全球前五大IGBT 标准模块厂商分别为英飞凌、三菱电机、富士电机、赛米控和日立功率半导体,合计市场份额约 70%,其中英飞凌市场份额接近 37%;在中国 IGBT 市场中,英飞凌仍保持领先的市场份额,国内企业合计市场份额较低,有巨大的发展空间。新能源汽车拉动 IGBT 需求。IGBT 模块在新能源汽车领域中发挥着至关重要的作用,是新能源汽车电机控制器、车载空调、充电桩等设备的核心元器件。新能源汽车中的功率半导体价值量提升十分显著,根据英飞凌年报显示,新能源汽车中功率半导体器件的价值量约为传统燃油车的
15、 5 倍以上。其中,IGBT 约占新能源汽车电控系统成本的37%,是电控系统中最核心的电子器件之一,因此,未来新能源汽车市场的快速增长,有望带动以 IGBT 为代表的功率半导体器件的价值量显著提升,从而有力推动 IGBT 市场的发展。EVTank 指出,2018 至 2025年我国新能源汽车 IGBT 市场规模将从 38 亿元增长至 165 亿元,2018-2025 年复合增长率为 23.33%。泓域咨询/昆明汽车芯片项目申请报告IGBT 模块方面,从 2020 年全球 IGBT 模块应用占比来看,工业控制占比 33.5%,是目前 IGBT 最大的应用领域,新能源汽车占比14.2%。Omdia
16、 指出,未来,汽车电动化、智能化推动车规级 IGBT 成为增长最快的细分领域,新能源汽车在 2024 年将超过工业控制成为 IGBT最大的下游应用领域,年均复合增长率达到 29.4%,远超行业平均增速。SiC:SiC 为代表的第三代半导体具有较高功率密度,适用于制作高温、高频、抗辐射及大功率器件。目前车规级半导体主要采用硅基材料,但受自身性能极限限制,硅基器件的功率密度难以进一步提高,硅基材料在高开关频率及高压下损耗大幅提升。与硅基半导体材料相比,以碳化硅为代表的第三代半导体材料具有高击穿电场、高饱和电子漂移速度、高热导率、高抗辐射能力等特点,适合于制作高温、高频、抗辐射及大功率器件。SiC
17、器件整体成本仍处于较高水平,未来有望逐步下降。与传统硅基材料相比,SiC 在能量损耗、封装尺寸和工作频率等方面优势明显,但由于在生产成本但由于生产设备、制造工艺、良率与成本的劣势,碳化硅基器件过去仅在小范围内应用。目前国际主流 SiC 衬底尺寸为 4英寸和 6 英寸,晶圆面积较小、芯片裁切效率较低、单晶衬底及外延良率较低导致 SiC 器件成本高昂,叠加后续晶圆制造、封装良率较泓域咨询/昆明汽车芯片项目申请报告低,且载流能力和栅氧稳定性仍待提高,SiC 器件整体成本仍处于较高水平。未来随着全球半导体厂商加速研发及扩产,产线良率将逐步提高,从而提高晶圆利用率,SiC 器件的整体成本有望逐步下降。目
18、前少量新能源汽车已采用 SiC 方案,未来行业整体格局仍存在不确定性。受益于新能源汽车市场的快速发展,SiC 的性能优势使得相关产品的研发和应用加速,随着技术进步和产能的逐步释放,SiC 器件的制备成本相比之前有所降低,目前 SiC 方案已被少量新能源汽车高端车型采用,在新能源汽车市场开始替代部分 IGBT 器件;而从全球市场竞争格局来看,产业链中以美国、欧洲和日本企业居多,以科锐、英飞凌和罗姆半导体微店的 IDM 企业占据了较高市场份额,国内方面,比亚迪集团在整车中率先使用 SiC 器件,并率先实现了 SiC 三相全桥模块在电机驱动控制器中的大批量装车。整体而言,SiC 市场仍处于发展的初期
19、阶段,未来几年竞争格局仍存在一定不确定性。受益新能源及光伏领域需求量的高速增长,未来五年 SiC 市场复合增速有望超过 20%。根据 Omdia 统计,2019 年全球 SiC 功率半导体市场规模为 8.9 亿美元,受益于新能源汽车及光伏领域需求量的高速增长,预计 2024 年全球 SiC 功率半导体市场规模预计将达 26.6 亿美元,年均复合增长率达到 24.5%。二、汽车汽车“三化三化”推动汽车电子规模不断扩张推动汽车电子规模不断扩张泓域咨询/昆明汽车芯片项目申请报告在 5G、人工智能等技术引领下,汽车电动化、智能化、网联化发展趋势成为必然。国家能源局在电动汽车安全指南(2019 版)中指
20、出,世界汽车产业正面临百年未有之大变局,正进入重大转型期。而 2020 年 11 月 2 日国务院办公厅发布的新能源汽车产业发展规划(20212035 年)则指出,智能化、网联化和电动化成为汽车产业的发展潮流和趋势,引领汽车电子产业的蓬勃发展。从内生动力看,新一轮科技革命,特别是电驱动相关技术、人工智能技术和互联网技术的迅猛发展正在为汽车产业的转型升级提供强大的技术支撑。从需求端来看,随着消费者对安全舒适、经济稳定、娱乐交互等方面的需求提高,消费者对汽车产品智能化的需求显著增加,驱动汽车不断朝电动化、智能化和网联化方向发展,汽车电子在汽车整车中的占比将越来越高。自动驾驶:感知层、决策层和执行层
21、等领域技术快速发展,为产业发展奠定技术基础。首先,随着车载传感器生产技术的进步,车载摄像头、毫米波雷达、激光雷达等传感器价格逐渐下探,加快扩散其在自动驾驶汽车中的应用,使得感知层能够更加敏锐、精准地对车辆所处环境进行实时感知,获取周围物体的精确距离及轮廓信息,从而实现避障、自主导航等功能。泓域咨询/昆明汽车芯片项目申请报告5G 网络、高精度地图、车路协同等“新基建”技术日趋成熟,使自动驾驶更为安全、顺畅和高效。以 5G 为基础的无线通信网络,在大带宽和低延时赋能的背景下,将实现车辆编队、半自动驾驶、远程驾驶等丰富的车联网应用功能,为自动驾驶的广泛应用提供坚实的技术支撑。乘用车前视系统装配率、装
22、配率显著提高。根据佐思汽研的统计数据,2020 年,中国乘用车新车前视系统装配量为 498.6 万辆,同比增长 62.1%,前视系统装配量装配率为 26.4%,较 2019 年全年上升10.9 百分点。随着前视系统算力提高以及功能的不断增加,预计到2025 年,我国乘用车前视系统装配量将达到 1,630.5 万辆,装配率将达到 65.0%。汽车智能化成为全球发展战略方向,自动驾驶渗透率有望快速提高。汽车电动化、智能化是全球汽车产业发展的战略方向,自动驾驶渗透率有望快速提高。根据华为在智能世界 2030种的预测,预计到 2030 年,电动汽车占所销售汽车的总量达到 50%,智能汽车网联化(C-V
23、2X)达到 60%,其中中国自动驾驶新车渗透率将达到 20%。而根据 StrategyAnalytic 指出,2020 年全球 L2 及以上的智能汽车渗透率,预计到 2025 年将达到 73%,其中 L4 在 2030 年实现规模应用。泓域咨询/昆明汽车芯片项目申请报告汽车电子前景广阔,占整车成本比重逐渐提高。在汽车电动化、智能化和网联化的趋势推动下,单车汽车电子元件价值量得到提升,汽车电子领域也有所拓宽,从一开始的发动机燃油电子控制和电子点火技术发展到高级驾驶辅助系统(AdvancedDrivingAssistanceSystem,ADAS)。随着新能源汽车渗透率逐步提高,预计汽车电子占整车
24、成本比重也将不断提升。根据中国产业信息网数据显示,2020 年汽车电子占整车成本比例为 34.32%,至2030 年有望达到 49.55%;而根据赛迪智库口径,乘用车汽车电子成本在整车成本中占比从上世纪 80 年代的 3%已增至 2015 年的 40%左右,预计 2025 年有望达到 60%。随着汽车电子化水平的日益提高,单车汽车电子成本的提升,汽车电子市场规模迅速攀升。中汽协预计到 2022 年,全球汽车电子市场规模达到 21,399 亿元,我国汽车电子市场规模将达到 9,783 亿元。三、汽车汽车“三化三化”驱动成长,国产替代前景可期驱动成长,国产替代前景可期新能源汽车渗透率快速提高,推动
25、汽车电子市场规模扩张。在政策和市场的双重推动下,以电动汽车为代表的新能源汽车是未来汽车行业发展的重要方向,渗透率不断提高。与燃油车相比,新能源汽车中汽车电子成本占比更高,推动汽车电子市场规模快速扩张。中汽协泓域咨询/昆明汽车芯片项目申请报告预计到 2022 年,全球汽车电子市场规模达到 21,399 亿元,我国汽车电子市场规模将达到 9,783 亿元。汽车电动化、智能化带汽车半导体需求,功率半导体、车规 MCU和 CMOS 等领域受益。汽车的智能化、网联化带来的新型器件需求主要在感知层和决策层,包括摄像头、雷达、IMU/GPS、V2X、ECU 等,直接拉动各类传感器芯片和计算芯片的增长。根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 昆明 汽车 芯片 项目 申请报告 模板 范本
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内