分类加法计数原理与分步乘法计数原理-(一).ppt
《分类加法计数原理与分步乘法计数原理-(一).ppt》由会员分享,可在线阅读,更多相关《分类加法计数原理与分步乘法计数原理-(一).ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.1分类计数原理分类计数原理与分步计数原理分步计数原理问题问题1 1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?分析分析:给座位编号有给座位编号有2类方法类方法,第一类方法第一类方法,用英文字母,有用英文字母,有26种号码种号码;第二类方法第二类方法,用阿拉伯数字,有用阿拉伯数字,有10种号码种号码;所以所以 有有 26+10=36 种不同号码种不同号码.请思考请思考:问题问题2:从甲地到乙地,可以乘火车,从甲地到乙地,可以乘火车,或或者者也可以乘汽车。一天中,火车有也可以乘汽车。一天中,火车有4 班,汽车有班,汽车有2班。那么一天中乘坐这些交通工
2、具从甲地到乙班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法地共有多少种不同的走法?分析分析:从甲地到乙地有从甲地到乙地有2类方法类方法,第一类方法第一类方法,乘火车,有乘火车,有4种方法种方法;第二类方法第二类方法,乘汽车,有乘汽车,有2种方法种方法;所以所以 从甲地到乙地共有从甲地到乙地共有 4+2=6 种方法种方法.请思考请思考:问题问题:你能否发现这两个问题有什么共同特征?你能否发现这两个问题有什么共同特征?1 1、都是要完成一件事、都是要完成一件事2 2、用任何一类方法都能直接完成这件事、用任何一类方法都能直接完成这件事3 3、都是采用加法运算、都是采用加法运算分类加法
3、计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法。2)首先要根据具体的问题确定一个)首先要根据具体的问题确定一个分类标准分类标准,在分,在分类标准下进行分类,然后对每类方法计数类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立)各类办法之间相互独立,都能独立的完成这件事,都能独立的完成这件事,要计算方法种数要计算方法种数,只需将各类方法数相加只需将各类方法数相加,因此分类计因此分类计数原理又称数原理又称加法原理加法原理说明说明说明说明例1:在填写高考志愿表时,一名高中毕业生了解到,A,B两所
4、大学各有一些自己感兴趣的强项专业,具体如下:A大学生物学化学医学物理学工程学B大学数学会计学信息技术学法学分析:两大学 只 能 选一 所 一 专业,且没有共 同 的 强项专业54+=9变式:变式:在填写高考志愿表时在填写高考志愿表时,一名高中毕业生了解一名高中毕业生了解到到,A,B,C三所大学各有一些自己感兴趣的强项专业三所大学各有一些自己感兴趣的强项专业,具体情况如下具体情况如下:A大学大学B大学大学生物学生物学化学化学医学医学物理学物理学工程学工程学数学数学会计学会计学信息技术学信息技术学法学法学如果这名同学只能选一个专业如果这名同学只能选一个专业,那么他共有多少种那么他共有多少种选择呢选
5、择呢?C大学大学机械制造机械制造建筑学建筑学广告学广告学汉语言文学汉语言文学韩语韩语N=5+4+5=14(种种)完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法。那么完成这件事共有_种方法.做一件事情,完成它可以有n类方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法。那么完成这件事共有种不同的方法N=m1+m2+mn N=m1+m2+m3 问题3:用前6个大写英文字母和19个阿拉伯数字,以A1,A2,B1,B2的方式给教室的座位编号.A123456789A1A
6、2A3A4A5A6A7A8A99种B1234567899种6 9=54请思考请思考:问题问题4:如图如图,由由A村去村去B村的道路有村的道路有3条,由条,由B村村去去C村的道路有村的道路有2条。从条。从A村经村经B村去村去C村,共有村,共有多少种不同的走法多少种不同的走法?A村村B村C村村北北南南中中北北南南分析分析:从从A村经村经 B村去村去C村分村分 两两 步步,第一步第一步,由由A村去村去B村有村有 3 种方法种方法,第二步第二步,由由B村去村去C村有村有 2 种方法种方法,所以从所以从A村经村经 B村去村去C村共有村共有 3 2=6 种不同种不同的方法的方法请思考请思考:分步乘法计数原
7、理 完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=mn种不同的方法.2)首先要根据具体问题的特点确定一个)首先要根据具体问题的特点确定一个分步的标准分步的标准,然后对每步方法计数然后对每步方法计数.1)各个步骤相互依存)各个步骤相互依存,只有各个步骤都完成了只有各个步骤都完成了,这件事这件事才算完成才算完成,将各个步骤的方法数相乘得到完成这件事的将各个步骤的方法数相乘得到完成这件事的方法总数方法总数,又称又称乘法原理乘法原理说明说明说明说明例2:设某班有男生30名,女生24名.现要从中选出男、女各一名代表班级参加比赛,共有多少种不同的选法?分
8、两步进行选取男女3024=720再根据分步乘法原理若若再再要要从从语语,数数,英英三三科科科科任任老老师师中中选选出出一一名名代代表表参参加加比比赛赛,那那又又共共 有有 多多 少少 种种 选选 法法?老师3=2160 如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有_种不同的方法.N=m1m2m3做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事有_种不同的方法.N=m1m2mn 例3:书架第1层放有4本不同的计算机书,第2层放
9、有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架中取1本书,有多少种不同取法?有3类方法,根据分类加法计数原理N=4+3+2=9(2)从书架第1,2,3层各取1本书,有多少种不同取法?分3步完成,根据分步乘法计数原理N=432=24解题关键:解题关键:从总体上看做这件事情是从总体上看做这件事情是“分类完成分类完成分类完成分类完成”,还还是是“分步完成分步完成分步完成分步完成”.”.再根据其对应的计数原理计算再根据其对应的计数原理计算.解:需先分类再分步解:需先分类再分步.(3 3)从书架上取)从书架上取2 2本不同种的书本不同种的书,有多少种不同的取法有多少种不同的取法?根据两个基
10、本原理,不同的取法总数是根据两个基本原理,不同的取法总数是 N=43+42+32=26 N=43+42+32=26第一类:从一、二层各取一本,第一类:从一、二层各取一本,有有43=1243=12种方法;种方法;第二类:从一、三层各取一本,第二类:从一、三层各取一本,有有42=842=8种方法;种方法;第三类:从二、三层各取一本,第三类:从二、三层各取一本,有有32=632=6种方法;种方法;答答:从书架上取从书架上取2 2本不同种的书本不同种的书,有有2626种不同种不同的取法的取法.例3:书架第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.思考思考1有不
11、同的中文书有不同的中文书9本,不同的英文书本,不同的英文书7本,不同的日文本,不同的日文书书5本从其中取出不是同一国文字的书本从其中取出不是同一国文字的书2本,问有多少本,问有多少种不同的取法?种不同的取法?2集合集合A=1,2,-3,B=-1,-2,3,4 从从A,B 中各取中各取1个元个元素作为点素作为点P(x,y)的坐标的坐标(1)可以得到多少个不同的点?)可以得到多少个不同的点?(2)这些点中,位于第一象限的有几个?)这些点中,位于第一象限的有几个?练一练练一练979575143(1)344324(2)22228例例4 4 要从甲、乙、丙要从甲、乙、丙3 3幅不同的画中选出幅不同的画中
12、选出2 2幅,幅,分别挂在左、右两边墙上的指定位置,问共有分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?多少种不同的挂法?甲甲乙乙丙丙解:从解:从3 3幅画中选出幅画中选出2 2幅分别挂在左、右两边墙幅分别挂在左、右两边墙上,可以分两个步骤完成:上,可以分两个步骤完成:第一步,从第一步,从3 3幅画中选幅画中选1 1幅挂在左边墙上,有幅挂在左边墙上,有3 3种选法;种选法;第二步,从剩下的第二步,从剩下的2 2幅画中选幅画中选1 1幅挂在右边墙上,幅挂在右边墙上,有有2 2种选法。种选法。根据分步计数原理,不同挂法的种数是:根据分步计数原理,不同挂法的种数是:N=32=6.N=32
13、=6.思考:还有其他解答本题的方法吗?例例4 4 要从甲、乙、丙要从甲、乙、丙、3 3幅不同的画中选出幅不同的画中选出2 2幅,幅,分别挂在左、右两边墙上的指定位置,问共有分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?多少种不同的挂法?甲甲乙乙丙丙解:从解:从3 3幅画中选出幅画中选出2 2幅分别挂在左、右两边墙幅分别挂在左、右两边墙上,可以分两个步骤完成:上,可以分两个步骤完成:第一步,从第一步,从3 3幅画中幅画中选出选出2 2幅幅,有,有3 3种选法;种选法;(“甲、乙甲、乙”,“甲、丙甲、丙”,“乙、丙乙、丙”)第二步,将选出的第二步,将选出的2 2幅画幅画挂好挂好,有,有
14、2 2中挂法中挂法根据分步计数原理,不同挂法的种数是:根据分步计数原理,不同挂法的种数是:N=32=6.N=32=6.分类加法计数原理分类加法计数原理分步乘法计数原理分步乘法计数原理相同点相同点不同点不同点用来计算用来计算“完成一件事完成一件事”的方法种数的方法种数每类每类方案中的每一方案中的每一种方法都能种方法都能_ _ 完成这件事完成这件事每步每步_才才算完成这件事情算完成这件事情(每步中的每一种(每步中的每一种方法方法不能独立不能独立完成完成这件事)这件事)类类类类相加相加步步步步相乘相乘独立独立依次完成依次完成分类分类完成完成分步分步完成完成思考:思考:两个计数原理两个计数原理的共同点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类 加法 计数 原理 分步 乘法
限制150内