223实际问题与二次函数第一课时.ppt
《223实际问题与二次函数第一课时.ppt》由会员分享,可在线阅读,更多相关《223实际问题与二次函数第一课时.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-202462-4xy若若3x3,该函数的最大值、最小值,该函数的最大值、最小值分别为分别为()、()、()。)。又若又若0 x3,该函数的最大值、最小,该函数的最大值、最小值分别为(值分别为()、()、()。)。求函数的最值问题,应注意什么求函数的最值问题,应注意什么?55 555 132、图中所示的二次函数图像的解析式、图中所示的二次函数图像的解析式为:为:1 1、求下列二次函数的最大值或最小值:、求下列二次函数的最大值或最小值:y=x22x3;y=x24x同学们,今天就让我们一同学们,今天就让我们一起去体会生活中的数学给起去体会生活中的数学给我们带来的乐趣吧!我们带来的乐趣吧!某商品现在
2、的售价为每件某商品现在的售价为每件60元,元,每星期可卖出每星期可卖出300件,市场调查反件,市场调查反映:每涨价映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每星期可多卖出元,每星期可多卖出18件,已知商品的进价为每件件,已知商品的进价为每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?自变量?哪些量随之发生了变化?某商品现在的售价为每件某
3、商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件,市场调查反映:每涨价件,市场调查反映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每元,每星期可多卖出星期可多卖出18件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商元,则每星期售出商品的利润品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。的函数关系式。涨价涨价x元时则
4、每星期少卖元时则每星期少卖 件,实际卖出件,实际卖出 件件,销销额为额为 元,买进商品需付元,买进商品需付 元因因此,所得利润为此,所得利润为元元10 x(300-10 x)(60+x)(300-10 x)40(300-10 x)y=(60+x)(300-10 x)-40(300-10 x)即即(0X30)(0X30)可以看出,这个函数的可以看出,这个函数的图像是一条抛物线的一图像是一条抛物线的一部分,这条抛物线的顶部分,这条抛物线的顶点是函数图像的最高点,点是函数图像的最高点,也就是说当也就是说当x取顶点坐取顶点坐标的横坐标时,这个函标的横坐标时,这个函数有最大值。由公式可数有最大值。由公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 223 实际问题 二次 函数 第一 课时
限制150内