《合并同类项》教案优秀2篇.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《合并同类项》教案优秀2篇.docx》由会员分享,可在线阅读,更多相关《《合并同类项》教案优秀2篇.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、合并同类项教案优秀2篇合并同类项教案 篇一 教学目标 1.会利用合并同类项的方法解一元一次方程;(重点) 2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用。(难点) 教学过程 一、情境导入 1.等式的基本性质有哪些? 2.解方程:(1)x-9=8;(2)3x+1=4. 3.下列各题中的两个项是不是同类项? (1)3xy与-3xy;(2)0.2ab与0.2ab; (3)2abc与9bc; (4)3mn与-nm; (5)4xyz与4xyz; (6)6与x. 4.能把上题中的同类项合并成一项吗?如何合并? 5.合并同类项的法则是什么?依据是什么? 二、合作探究 探究点一:利用合并同
2、类项解简单的一元一次方程 例1解下列方程: (1)9x-5x=8; (2)4x-6x-x=15. 解析:先将方程左边的同类项合并,再把未知数的系数化为1. 解:(1)合并同类项,得4x=8. 系数化为1,得x=2. (2)合并同类项,得-3x=15. 系数化为1,得x=-5. 方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式。 探究点二:根据“总量=各部分量的和”列方程解决问题 例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为35,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个? 解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白
3、皮块数目比为35,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程。 解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个). 答:黑色皮块有12个,白色皮块有20个。 方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解。此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来。 三、板书设计 1.用合并同类项的方法解简单的一元一次方程。 解方程的步骤: (1)合并同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 合并同类项 合并 同类项 教案 优秀
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内