221一元二次方程(第1课时) (2).ppt
《221一元二次方程(第1课时) (2).ppt》由会员分享,可在线阅读,更多相关《221一元二次方程(第1课时) (2).ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、22.1 一元二次方程 要设计一座要设计一座2m2m高的人体雕像,修雕像的高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下比,等于下部与全部的高度比,雕像的下部应设计为多高?部应设计为多高?雕像上部的高度雕像上部的高度AC,下部的高度,下部的高度BC应有如下关系:应有如下关系:设雕像下部高设雕像下部高xm,于是得方程,于是得方程整理得整理得x22x4=0 x2=2(2x)ACB2cm 问题问题1 1 :如图,有一块矩形铁皮,长:如图,有一块矩形铁皮,长100cm100cm,宽,宽50cm50cm,在它的四角各切一
2、个同样的正方形,然后将,在它的四角各切一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为要制作的无盖方盒的底面积为3600cm3600cm2 2,那么铁皮各,那么铁皮各角应切去多大的正方形?角应切去多大的正方形?设切去的正方形的边长为设切去的正方形的边长为xcm,则盒底的长为(,则盒底的长为(1002x)cm,宽,宽为(为(502x)cm,根据方盒的底面积为,根据方盒的底面积为3600cm2,得,得x(1002x)()(502x)=3600.整理,得整理,得 4x2300 x+1400=0.化简,得化简,得
3、 x275x+350=0.由方程由方程可以得出所切正方形的具体尺寸可以得出所切正方形的具体尺寸问题问题2:要组织一次排球邀请赛,参赛的每两个队之间都要要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排比赛一场,根据场地和时间等条件,赛程计划安排7天,每天,每天安排天安排4场比赛,比赛组织者应邀请多少个队参赛?场比赛,比赛组织者应邀请多少个队参赛?设应邀请设应邀请x个队参赛,每个队要与其它(个队参赛,每个队要与其它(x1)个队各赛)个队各赛1场,由于场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比甲队对乙队的比赛和乙队对甲队的比赛是同一场比
4、赛,所以全部比赛共赛共 场场列方程列方程整理,得整理,得化简,得化简,得由方程由方程可以得出参赛队数可以得出参赛队数全部比赛共全部比赛共4728场场方程方程 有什么特点?有什么特点?()这些方程的两边都是整式,这些方程的两边都是整式,()方程中只含有一个未知数,未知数的最高次数是方程中只含有一个未知数,未知数的最高次数是2.2.像这样的等号两边都是像这样的等号两边都是整式整式,只含有,只含有一个一个未知数(一元),未知数(一元),并且未知数的最高次数是并且未知数的最高次数是2(二次)的方程(二次)的方程,叫做,叫做一元二次方程一元二次方程.x275x+350=0 x22x4=0 1 1、判断下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 221一元二次方程第1课时 2 221 一元 二次方程 课时
限制150内