现代分子生物学第八章真核生物基因表达调控.ppt
《现代分子生物学第八章真核生物基因表达调控.ppt》由会员分享,可在线阅读,更多相关《现代分子生物学第八章真核生物基因表达调控.ppt(127页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、基本概念与原理基本概念与原理一、基因表达的时间性及空间性一、基因表达的时间性及空间性(一)时间特异性(一)时间特异性按功能需要,某一特定基因的表达严格按按功能需要,某一特定基因的表达严格按特定的时间顺序发生,称之为基因表达的特定的时间顺序发生,称之为基因表达的时间时间特异性特异性(temporal specificity)。多细胞生物基因表达的时间特异性又称多细胞生物基因表达的时间特异性又称阶阶段特异性段特异性(stage specificity)。目目 录录第八章 真核生物基因表达调控(二)空间特异性(二)空间特异性基基因因表表达达伴伴随随时时间间顺顺序序所所表表现现出出的的这这种种分分布布
2、差差异异,实实际际上上是是由由细细胞胞在在器器官官的的分分布布决决定定的的,所所以以空空间间特特异异性性又又称称细细胞胞或或组组织织特特异异性性(cell or tissue specificity)。在在个个体体生生长长全全过过程程,某某种种基基因因产产物物在在个个体体按按不不同同组组织织空空间间顺顺序序出出现现,称称之之为为基基因因表表达达的的空间特异性空间特异性(spatial specificity)。目目 录录二、基因表达的方式二、基因表达的方式按对刺激的反应性,基因表达的方式分为:按对刺激的反应性,基因表达的方式分为:(一)组成性表达(一)组成性表达某某些些基基因因在在一一个个个个
3、体体的的几几乎乎所所有有细细胞胞中中持持续续表表达达,通通常常被被称称为为管管家家基基因因(housekeeping gene)。无无论论表表达达水水平平高高低低,管管家家基基因因较较少少受受环环境境因因素素影影响响,而而是是在在个个体体各各个个生生长长阶阶段段的的大大多多数数或或几几乎乎全全部部组组织织中中持持续续表表达达,或或变变化化很很小小。区区别别于于其其他他基基因因,这这类类基基因因表表达达被被视视为为组组成成性性基基因表达因表达(constitutive gene expression)。(二)诱导和阻遏表达(二)诱导和阻遏表达在在特特定定环环境境信信号号刺刺激激下下,相相应应的的
4、基基因因被被激激活活,基基因因表表达达产产物物增增加加,这这种种基基因因称称为为可可诱诱导导基因基因。可可诱诱导导基基因因在在特特定定环环境境中中表表达达增增强强的的过过程程,称为称为诱导诱导(induction)。如如果果基基因因对对环环境境信信号号应应答答是是被被抑抑制制,这这种种基基因因是是可可阻阻遏遏基基因因。可可阻阻遏遏基基因因表表达达产产物物水水平平降低的过程称为降低的过程称为阻遏阻遏(repression)。在在一一定定机机制制控控制制下下,功功能能上上相相关关的的一一组组基基因因,无无论论其其为为何何种种表表达达方方式式,均均需需协协调调一一致致、共共 同同 表表 达达,即即
5、为为 协协 调调 表表 达达(coordinate expression),这这 种种 调调 节节 称称 为为 协协 调调 调调 节节(coordinate regulation)。三、基因表达调控的基本原理三、基因表达调控的基本原理(一)基因表达的多级调控(一)基因表达的多级调控基因基因激活激活转录起始转录起始 转录后加工转录后加工mRNA降解降解蛋白质降解等蛋白质降解等蛋白质翻译蛋白质翻译翻译后加工修饰翻译后加工修饰转录起始转录起始(二)基因转录激活调节基本要素(二)基因转录激活调节基本要素基基因因表表达达的的调调节节与与基基因因的的结结构构、性性质质,生生物物个个体体或或细细胞胞所所处处
6、的的内内、外外环环境境,以及细胞内所存在的转录以及细胞内所存在的转录调节蛋白调节蛋白有关。有关。1.特异特异DNA序列和调节蛋白质序列和调节蛋白质指指的的是是反反式式作作用用因因子子与与顺顺式式作作用用元元件件之之间间的的特特异异识识别别及及结结合合。通通常常是是非非共共价价结结合合,被被识识别别的的DNA结结合合位位点点通通常常呈呈对对称称、或或不不完完全对称结构。全对称结构。绝绝大大多多数数调调节节蛋蛋白白质质结结合合DNA前前,需需通通过过蛋蛋白白质质-蛋蛋白白质质相相互互作作用用,形形成成二二聚聚体体(dimer)或或多聚体多聚体(polymer)。2.DNA-蛋白质蛋白质蛋白质蛋白质
7、-蛋白质蛋白质的相互作用的相互作用3.RNA聚合酶聚合酶 原核启动序列原核启动序列/真核启动子与真核启动子与RNA聚合酶聚合酶活性活性 RNA聚合酶与其的亲和力,影响转录。聚合酶与其的亲和力,影响转录。调节蛋白与调节蛋白与RNA聚合酶活性聚合酶活性一一些些特特异异调调节节蛋蛋白白在在适适当当环环境境信信号号刺刺激激下下表表达达,然然后后通通过过DNA-蛋蛋白白质质、蛋蛋白白质质-蛋蛋白白质质相相互互作用影响作用影响RNA聚合酶活性。聚合酶活性。第一节第一节 概述概述 真核生物和原核生物在基因表达调控上有以下真核生物和原核生物在基因表达调控上有以下几点不同:几点不同:v1.1.真核生物的转录激活
8、总是伴随着真核生物的转录激活总是伴随着转录区染转录区染色质结构色质结构的变化。的变化。v2.2.基因表达调控一般以基因表达调控一般以正调控正调控为主。为主。v3.3.真核生物的转录和翻译在真核生物的转录和翻译在时间和空间时间和空间上是上是分分离离的,调控的环节更多,复杂性更高。的,调控的环节更多,复杂性更高。v4 4 真核生物基本上是采取逐个基因调控表达的真核生物基本上是采取逐个基因调控表达的形式。形式。v真核生物转录的起始是基因表达调控最主要的步骤。v真核生物基因的表达能在几个连续步骤中的任一步中以基因特有(gene specific)的方式受到调控。v真核生物体内各种细胞表型的差异主要是编
9、码蛋白质的基因的表达不同引起的。这些编码蛋白质的基因都经过RNA聚合酶转录。DNA水平的调控v染色质丢失染色质丢失 低等生物及动物红细胞,不可低等生物及动物红细胞,不可逆逆v基因扩增基因扩增v基因重排基因重排 基因片段改变原衔接顺序,重排基因片段改变原衔接顺序,重排为完整的转录单位为完整的转录单位vDNA甲基化甲基化 与基因的表达成反比关系与基因的表达成反比关系直接改变基因的构型影响转录因子与顺式作直接改变基因的构型影响转录因子与顺式作用元件结合用元件结合5端端调调控序列甲基化后与核内甲基化控序列甲基化后与核内甲基化CG序序列列结结合蛋白合蛋白结结合合DNase高敏感区为去甲基化的标志高敏感区
10、为去甲基化的标志v真核细胞会发生基因扩增(gene amplification),即基因组中的特定段落在某些情况下会复制产生许多拷贝。基因的扩增无疑能够大幅度提高基因表达产物的量,但这种调控机理至今还不清楚。真核生物基因表达调控的主要控制点包括:v1.基因结构的激活(基因的活化)v2.处于活化状态基因的转录由转录起始阶段控制。v3.转录过程中的调控v4.转录产物的后加工v除了加帽、加尾、去除内含子和连接外显子以外,在核RNA水平上,真核生物还可以通过改变剪接类型实现调控蛋白质产物的类型。v5.胞浆中一个特定的mRNA是否被翻译仍被调控。基因结构的激活基因结构的激活(基因的活化)(基因的活化)染
11、色质的结构、染色质中DNA和组蛋白的结构状态都影响基因的活化,有以下现象:(1)染色质结构影响基因转录。异染色质(heterochromatin)中从未见有基因转录表达;(2)组蛋白的作用,可能扮演了非特异性阻遏蛋白的作用;核小体结构中的组蛋白乙酰化(acetylation)和泛素化(ubiquitination),以及H3组蛋白巯基化等现象,都是核小体不稳定或解体的因素或特征。转录活跃的区域也常缺乏核小体的结构。这些都表明核小体结构影响基因转录。v(3)转录活跃区域对核酸酶作用敏感度增加。对DNase 高敏感点多在调控蛋白结合位点的附近,该区域核小体的结构发生变化,可能有利于调控蛋白 结合而
12、促进转录。v v(4)DNA拓扑结构变化。RNA聚合酶转录方向前方DNA的构象是正性超螺旋,正性超螺旋会拆散核小体,有利于RNA聚合酶向前移动转录;v(5)DNA碱基修饰变化甲基化最常发生在某些基因5侧区的CpG序列中,实验表明这段序列甲基化可使其后的基因不能转录,甲基化可能阻碍转录因子与DNA特定部位的结合从而影响转录。v由此可见,染色质中的基因转录前先要有一个被激活的过程,但目前对激活机制还缺乏认识。v细胞中处于“活化”状态的基因才得到表达,变成“活化”结构是基因表达的第一步。核心组蛋白N末端乙酰化修饰与基因调控有关。“活化基因”与核心组蛋白乙酰化的增强有密切关系。v最近关于组蛋白乙酰化与
13、转录过程的直接联系已有报道。v普遍认为,其N端尾链的正电荷性很可能与转录因子发生竞争,夺取DNA磷酸骨架的负电荷性,因此特定赖氨酸残基的乙酰化大大降低了组蛋白-DNA的相互作用,把染色体从抑制状态下释放出来,激活转录。v因此,对核心组蛋白乙酰化的调节,是基因调控的一个控制点。基因的活化基因的活化v染色质重组装是指染色质或核小体的结构、成分变化,这些变化具有转录调控作用。v在染色质重组装过程中,连接组蛋白H1成分的时序变化以及核心组蛋白的乙酰化,都对早期发育过程的转录调控起了关键性的作用。v染色质重组装控制着早期转录抑制状态向激活状态的转变,是母型基因控制向合子型基因控制过渡(即所谓“中期囊胚转
14、换(midblastula transition,MBT)的重要途径。第二节 真核生物基因转录调控v真核生物绝大多数基因调控发生在转录起始阶段,但由于基因表达的控制可发生在多个阶段,因此RNA产物的产生并不一定会形成蛋白质产物。v组织特异性基因表达调控是真核细胞分化的核心。控制胚胎发育的转录因子大多具有这方面的特点。一、基因转录的顺式调控元件v真核基因的顺式作用元件按照功能可以分为启动子、增强子以及沉寂子。(一)启动子的选择vRNA聚合酶的启动子有含有TATA框的典型启动子和不含TATA框的非典型启动子两种。哺乳类RNA聚合酶启动子中常见的元件元件名称共同序列结合的蛋白因子 名称分子量结合DN
15、A长度TATAboxTATAAAATBP30,00010bpGC boxGGGCGGSP-1105,00020bpCAAT boxGGCCAATCTCTF/NF160,00022bpOctamerATTTGCATOct-176,00010bpOct-253,00020bpkBGGGACTTTCCNFkB44,00010bpATFGTGACGTAFT?20bp TATA框是核心启动子中有效的定位成分,也是上游启动子和增强子产生诱导效应所必需的。1含有TATA框的启动子v有时一个基因上有串联着的两个TATA框,它们可分别地或有侧重地对不同的诱导物作出应答。淀粉酶基因在唾液腺和肝脏中分别选择了转录效
16、率不同的两个转录起始点。2非典型的启动子 少数基因没有典型的TATA框启动子序列。非典型启动子有的富含GC框,有的则没有GC框。v富含GC的非典型启动子的转录 含有这类启动子结构的基因的转录起始是不规则的,并且只有基础水平表达。持家基因(housekeeping gene)多以这种转录方式。v无TATA框、GC框的基因转录 这类基因启动子上没有TATA框,却在转录起始点附近处形成起始子(initiator,Inr)。这种元件的保守序列为PyPyANT/APyPy。RNA聚合酶在这些基因上的转录起始于一个或数个紧密成簇的起始元件转录起始子的A位上。(二)、增强子v增强子(enhancer)最早是
17、在SV40病毒中发现的一段长约200bp的DNA片段,可使旁侧基因的转录效率提高100倍。以后在多种真核生物甚至是原核生物都发现了增强子。v增强子是真核细胞中通过启动子来提高转录效率的一种远端的顺式调控元件。v增强子相对于启动子的位置不固定。有效的增强子可以位于基因的5端,也可位于3端,还可 位于内含子区,一般跨度为100200 bp。v增强子和启动子一样由多种组件构成,其基本的核心元件常由812bp组成,可以有完整的或部分的回文结构,以单拷贝或多拷贝串联的形式存在。1.增强子的特性:v增强子能提高同一条DNA链上相邻启动子转录的效率和速率。v增强子对同源或异源基因同样有效。v增强子的位置可在
18、基因5上游、基因内或基因的3下游序列中。v增强子在DNA双链中没有5与3固定的方向性,将增强子倒置依然有效。v增强子可以远离转录起始点,通常在14 kb。v增强子一般有组织或细胞特异性。v增强子的活性与其在DNA双螺旋结构中的空间方向性有关。v增强子必需有启动子才可以发挥作用。v(三)沉寂子v最早在酵母中发现,以后在T淋巴细胞的T抗原受体基因的转录和重排中证实这种负调控顺式元件的存在。目前对这种在基因转录降低或关闭中起作用的序列研究还不多,但从已有的例子看到:沉寂子的作用可不受序列方向的影响,也能远距离发挥作用,并可对异源基因的表达起作用。二、通用调控中的调控效应元件v受共同控制的一组基因经常
19、共用一个被转录调控因子识别的启动子元件。v能够使基因应答此类因子的元件被称为效应元件(response element)。如热激效应元件和糖皮质激素效应元件等。为顺式作用元件。v效应元件具有与启动子上游元件启动子上游元件或增强增强子子相同的特点。它们含有短的保守序列,调控因子的结合区在保守序列上,只要单个效应元件就可以受调控因子的调控。v效应元件可能位于启动子内,也可能位于增强子内。v金属硫蛋白的调控说明了调控的通用原理,几个不同的元件中的任一个,无论位于启动子中还是增强子中都能独立激活基因表达。v热激应答在原核和真核生物中许多基因的表达控制中很普遍,温度增加关闭一些基因的转录,同时开放热激基
20、因(heat shock gene)的转录,从而引起mRNA翻译的变化。三、反式作用因子v以反式作用影响转录的因子可统称为转录因子(transcription factors,TF)。vRNA聚合酶聚合酶是一种反式作用于转录的蛋白因子。v在真核细胞中RNA聚合酶通常不能单独发挥转录作用,而需要与其他转录因子共同协作。对TF研究最多。vRNA聚合酶的转录活性依赖于基本转录因子,在转录前先形成转录复合体,其转录效率受许多蛋白因子的影响,协调表达更为复杂。人类人类型启动子的转录因子型启动子的转录因子因子因子 分子量分子量 功能功能RNA Pol 10KRNA Pol 10K 依赖模板合成依赖模板合成
21、RNARNATFATFA12,19,35K 12,19,35K 稳定稳定TFDTFD和和DNADNA的结合,激活的结合,激活TBPTBP亚基亚基TFBTFB33K33K 结合模板链(结合模板链(-10-10+10+10),起始),起始PolPol结合,和结合,和TFE/F TFE/F 相互作用相互作用TFDTFD(TBP,30K)TBP(TBP,30K)TBP亚基识别亚基识别TATATATA,将聚合酶组入复合体中,将聚合酶组入复合体中,TAFsTAFs识别识别 特殊启动子特殊启动子TFETFE34K()34K()结合在结合在PolPol的前部,使复合体的保护区延伸到下游的前部,使复合体的保护区
22、延伸到下游 57K()57K()TFFTFF38,74K38,74K 大亚基具解旋酶活性(大亚基具解旋酶活性(RAP74RAP74),小亚基和小亚基和PolPol结合,结合,介导其加入复合体介导其加入复合体TFHTFH 具激酶活性,可以磷酸化具激酶活性,可以磷酸化PolCPolC端的端的CTDCTD,使,使PolPol逸出,逸出,延伸延伸TFITFI120K120K 识别识别InrInr,起始,起始TFF/DTFF/D结合结合TFJTFJ 在在TFFTFF后加入复合体,不改变后加入复合体,不改变DNADNA的结合方式的结合方式TFSTFS RNA RNA合成延伸合成延伸v不同基因由不同的上游启
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 分子生物学 第八 章真核 生物 基因 表达 调控
限制150内