中小学数学教师招聘、选调考试模拟检测试卷【详细参考答案解析】.docx
《中小学数学教师招聘、选调考试模拟检测试卷【详细参考答案解析】.docx》由会员分享,可在线阅读,更多相关《中小学数学教师招聘、选调考试模拟检测试卷【详细参考答案解析】.docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 1 页 共 24 页省市省市 班级班级 姓名姓名_ 准考证号准考证号_装订线绝绝密密 启启用用前前中小学数学教师招聘考试模拟检测试卷(满分:(满分:12120 0 分;时间:分;时间:150150 分钟)分钟)一、选择题(本大题共一、选择题(本大题共 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分)1(3 分)下列各组数中,把两数相乘,积为 1 的是( )A2 和2B2 和C和D和2(3 分)一个几何体的三视图如图所示,这个几何体是( )A球 B圆柱C圆锥D立方体3(3 分)下列各组数中,不可能成为一个三角形三边长的是( )A2,3,4B5,7,7C5,6,12D6,8,1
2、04(3 分)在 RtABC 中,C=90,AB=5,BC=3,则 tanA 的值是( )ABCD5(3 分)在下列的计算中,正确的是( )Am3+m2=m5Bm5m2=m3C(2m)3=6m3D(m+1)2=m2+16(3 分)对于二次函数 y=(x1)2+2 的图象与性质,下列说法正确的是( )A对称轴是直线 x=1,最小值是 2B对称轴是直线 x=1,最大值是 2C对称轴是直线 x=1,最小值是 2D对称轴是直线 x=1,最大值是 27(3 分)如图,在半径为 13cm 的圆形铁片上切下一块高为 8cm 的弓形铁片,则弓形弦 AB 的长为( )A10cmB16cmC24cmD26cm8(
3、3 分)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )ABCD9(3 分)若关于 x 的一元一次不等式组的解集是 x5,则 m 的取值范围是( )Am5Bm5Cm5Dm510(3 分)如图,为了监控一不规则多边形艺术走廊内的活动情况,现已在 A、B两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到 180的扇形),图中的阴影部分是 A 处监控探头观测到的区域要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是( )第 2 页 共 24 页AE 处BF 处CG 处DH 处二、填空题(本题
4、有二、填空题(本题有 6 小题,每小题小题,每小题 4 分,共分,共 24 分)分)11(4 分)分解因式:x24= 12(4 分)若,则= 13(4 分)2017 年 5 月 28 日全国部分宜居城市最高温度的数据如下:宜居城市大连青岛威海金华昆明三亚最高气温()252835302632则以上最高气温的中位数为 14(4 分)如图,已知 l1l2,直线 l 与 l1、l2相交于 C、D 两点,把一块含 30角的三角尺按如图位置摆放若1=130,则2= 15(4 分)如图,已知点 A(2,3)和点 B(0,2),点 A 在反比例函数 y=的图象上,作射线 AB,再将射线 AB 绕点 A 按逆时
5、针方向旋转 45,交反比例函数图象于点 C,则点 C 的坐标为 16(4 分)在一空旷场地上设计一落地为矩形 ABCD 的小屋,AB+BC=10m,拴住小狗的 10m 长的绳子一端固定在 B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为 S(m2)(1)如图 1,若 BC=4m,则 S= m2(2)如图 2,现考虑在(1)中矩形 ABCD 小屋的右侧以 CD 为边拓展一正CDE 区域,使之变成落地为五边形 ABCED 的小屋,其他条件不变,则在 BC 的变化过程中,当 S 取得最小值时,边 BC 的长为 m第 3 页 共 24 页三、解答题(本题有三、解答题(本题有 8 个小
6、题,共个小题,共 66 分,各小题都必须写出解答过程)分,各小题都必须写出解答过程)17(6 分)计算:2cos60+(1)2017+|3|(1)018(6 分)解分式方程:=19(6 分)如图,在平面直角坐标系中,ABC 各顶点的坐标分别为 A(2,2),B(4,1),C(4,4)(1)作出ABC 关于原点 O 成中心对称的A1B1C1;(2)作出点 A 关于 x 轴的对称点 A,若把点 A向右平移 a 个单位长度后落在A1B1C1的内部(不包括顶点和边界),求 a 的取值范围20(8 分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好
7、、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计 4 人,良好漏统计 6 人,于是及时更正,从而形成如下图表,请按正确数据解答下列各题:体能等级调整前人数调整后人数优秀8 良好16 及格12 不及格4 合计40 第 4 页 共 24 页(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生 1500 人,请你估算出该校体能测试等级为“优秀”的人数21(8 分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 O 点正上方 1m 的 P 处发出一球,羽毛球飞行的高度 y(m)与水平距离x(m)之间满足函数表达式 y=a(x4)2+
8、h,已知点 O 与球网的水平距离为 5m,球网的高度为 1.55m(1)当 a=时,求 h 的值;通过计算判断此球能否过网(2)若甲发球过网后,羽毛球飞行到点 O 的水平距离为 7m,离地面的高度为m的 Q 处时,乙扣球成功,求 a 的值22(10 分)如图,已知 AB 是O 的直径,点 C 在O 上,CD 是O 的切线,ADCD 于点 D,E 是 AB 延长线上一点,CE 交O 于点 F,连接 OC、AC(1)求证:AC 平分DAO(2)若DAO=105,E=30求OCE 的度数;若O 的半径为 2,求线段 EF 的长第 5 页 共 24 页23(10 分)如图 1,将ABC 纸片沿中位线
9、EH 折叠,使点 A 对称点 D 落在 BC 边上,再将纸片分别沿等腰BED 和等腰DHC 的底边上的高线 EF,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形(1)将ABCD 纸片按图 2 的方式折叠成一个叠合矩形 AEFG,则操作形成的折痕分别是线段 , ;S矩形 AEFG:SABCD= (2)ABCD 纸片还可以按图 3 方式折叠成一个叠合矩形 EFGH,若 EF=5,EH=12,求 AD 的长;(3)如图 4,四边形 ABCD 纸片满足ADBC,ADBC,ABBC,AB=8,CD=10,小
10、明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出 AD、BC 的长24(12 分)如图 1,在平面直角坐标系中,四边形 OABC 各顶点的坐标分别为O(0,0),A(3,3)、B(9,5),C(14,0),动点 P 与 Q 同时从 O 点出发,运动时间为 t 秒,点 P 沿 OC 方向以 1 单位长度/秒的速度向点 C 运动,点 Q 沿折线 OAABBC 运动,在 OA、AB、BC 上运动的速度分别为 3,(单位长度/秒),当 P、Q 中的一点到达 C 点时,两点同时停止运动(1)求 AB 所在直线的函数表达式;(2)如图 2,当点 Q 在 AB 上运动时,求CPQ 的面
11、积 S 关于 t 的函数表达式及 S 的最大值;(3)在 P、Q 的运动过程中,若线段 PQ 的垂直平分线经过四边形 OABC 的顶点,求相应的 t 值第 6 页 共 24 页第 7 页 共 24 页参考答案与试题解析参考答案与试题解析一、选择题(本大题共一、选择题(本大题共 10 小题,每小题小题,每小题 3 分,共分,共 30 分)分)1(3 分)(2017金华)下列各组数中,把两数相乘,积为 1 的是( )A2 和2B2 和C和D和【分析】直接利用两数相乘运算法则求出答案【解答】解:A、2(2)=4,故此选项不合题意;B、2=1,故此选项不合题意;C、=1,故此选项符合题意;D、()=3
12、,故此选项不合题意;故选:C【点评】此题主要考查了实数运算,正确掌握运算法则是解题关键2(3 分)(2017金华)一个几何体的三视图如图所示,这个几何体是( )A球 B圆柱C圆锥D立方体【分析】根据三视图确定该几何体是圆柱体【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱故选:B【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识3(3 分)(2017金华)下列各组数中,不可能成为一个三角形三边长的是( )A2,3,4B5,7,7C5,6,12D6,8,10【分析】根据三角形三边关系定理判断即可【解答】解:5+61
13、2,三角形三边长为 5,6,12 不可能成为一个三角形,故选:C【点评】本题考查的是三角形的三边关系,掌握三角形三边关系定理:三角形两边之和大于第三边是解题的关键4(3 分)(2017金华)在 RtABC 中,C=90,AB=5,BC=3,则 tanA 的值是( )ABCD第 8 页 共 24 页【分析】根据勾股定理,可得 AC 的长,根据正切函数的定义,可得答案【解答】解:由勾股定理,得AC=4,由正切函数的定义,得tanA=,故选:A【点评】本题考查了锐角三角函数,利用正切函数的定义是解题关键5(3 分)(2017金华)在下列的计算中,正确的是( )Am3+m2=m5Bm5m2=m3C(2
14、m)3=6m3D(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选 B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键6(3 分)(2017金华)对于二次函数 y=(x1)2+2 的图象与性质,下列说法正确的是( )A对称轴是直线 x=1,最小值是 2B对称轴是直线 x=1,最大值是 2C对称轴是直线 x=1,最小值是 2D对称轴是直线 x=1,最大值是 2【分析】根据抛物线的图象与性质即可判断【解答】解:由抛物线的解析式:y=(
15、x1)2+2,可知:对称轴 x=1,开口方向向下,所以有最大值 y=2,故选(B)【点评】本题考查二次函数的性质,解题的关键是正确理解抛物线的图象与性质,本题属于基础题型7(3 分)(2017金华)如图,在半径为 13cm 的圆形铁片上切下一块高为 8cm 的弓形铁片,则弓形弦 AB 的长为( )第 9 页 共 24 页A10cmB16cmC24cmD26cm【分析】首先构造直角三角形,再利用勾股定理得出 BC 的长,进而根据垂径定理得出答案【解答】解:如图,过 O 作 ODAB 于 C,交O 于 D,CD=8,OD=13,OC=5,又OB=13,RtBCO 中,BC=12,AB=2BC=24
16、故选:C【点评】此题主要考查了垂径定理以及勾股定理,得出 AC 的长是解题关键8(3 分)(2017金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( )ABCD【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率【解答】解:画树状图得:一共有 12 种等可能的结果,甲、乙同学获得前两名的有 2 种情况,甲、乙同学获得前两名的概率是=;故选 D【点评】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识
17、点为:概率=所求情况数与总情况数之比9(3 分)(2017金华)若关于 x 的一元一次不等式组的解集是x5,则 m 的取值范围是( )Am5Bm5Cm5Dm5【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定 m 的范围【解答】解:解不等式 2x13(x2),得:x5,第 10 页 共 24 页不等式组的解集为 x5,m5,故选:A【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键10(3 分)(2017金华)如图,为了监控一不规则多边形艺术走
18、廊内的活动情况,现已在 A、B 两处各安装了一个监控探头(走廊内所用探头的观测区域为圆心角最大可取到 180的扇形),图中的阴影部分是 A 处监控探头观测到的区域要使整个艺术走廊都能被监控到,还需要安装一个监控探头,则安装的位置是( )AE 处BF 处CG 处DH 处【分析】根据各选项安装位置判断能否覆盖所有空白部分即可【解答】解:如图,A、若安装在 E 处,仍有区域:四边形 MGNS 和PFI 监控不到,此选项错误;B、若安装在 F 处,仍有区域:ERW 监控不到,此选项错误;C、若安装在 G 处,仍有区域:四边形 QEWK 监控不到,此选项错误;D、若安装在 H 处,所有空白区域均能监控,
19、此选项正确;故选:D【点评】本题主要考查视点和盲区,掌握视点和盲区的基本定义是解题的关键二、填空题(本题有二、填空题(本题有 6 小题,每小题小题,每小题 4 分,共分,共 24 分)分)11(4 分)(2017金华)分解因式:x24= (x+2)(x2) 【分析】直接利用平方差公式进行因式分解即可【解答】解:x24=(x+2)(x2)故答案为:(x+2)(x2)【点评】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特第 11 页 共 24 页点是:两项平方项,符号相反12(4 分)(2017金华)若,则= 【分析】根据等式的性质 1,等式两边都加上 1,等式仍然成立可得出答案
20、【解答】解:根据等式的性质:两边都加 1,则=,故答案为:【点评】本题主要考查等式的性质,观察要求的式子和已知的式子之间的关系,从而利用等式的性质进行计算13(4 分)(2017金华)2017 年 5 月 28 日全国部分宜居城市最高温度的数据如下:宜居城市大连青岛威海金华昆明三亚最高气温()252835302632则以上最高气温的中位数为 29 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数【解答】解:题目中数据共有 6 个,按从小到大排列后为:25,26,28,30,32,35故中位数是按从小到大排列后第 3,第 4 两个数的平均数,故这组数据的中
21、位数是 (28+30)=29故答案为:29【点评】本题属于基础题,考查了确定一组数据的中位数的能力注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数14(4 分)(2017金华)如图,已知 l1l2,直线 l 与 l1、l2相交于 C、D 两点,把一块含 30角的三角尺按如图位置摆放若1=130,则2= 20 【分析】先根据平行线的性质,得到BDC=50,再根据ADB=30,即可得出2=20【解答】解:1=130,3=50,又l1l2,BDC=50,又ADB=30,2=20,第 12 页 共 24
22、 页故答案为:20【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等15(4 分)(2017金华)如图,已知点 A(2,3)和点 B(0,2),点 A 在反比例函数 y=的图象上,作射线 AB,再将射线 AB 绕点 A 按逆时针方向旋转 45,交反比例函数图象于点 C,则点 C 的坐标为 (1,6) 【分析】解法 1:将点 A 绕着点 B 顺时针旋转 90得到点 D,连接 AD,则ABD 是等腰直角三角形,进而得到点 D 在射线 AC 上,根据点 A(2,3)和点 B(0,2),可得 D(1,0),再根据待定系数法求得直线 AC 的解析式,最后解方程组即可得到点 C 的坐标
23、;解法 2:先过 A 作 AEx 轴于 E,以 AE 为边在 AE 的左侧作正方形 AEFG,交 AB于 P,根据直线 AB 的解析式为 y=x+2,可得 PF=,将AGP 绕点 A 逆时针旋转90得AEH,构造ADPADH,再设 DE=x,则 DH=DP=x+,FD=1+2x=3x,在 RtPDF 中,根据 PF2+DF2=PD2,可得方程()2+(3x)2=(x+)2,进而得到D(1,0),即可得出直线 AD 的解析式为 y=3x3,最后解方程组即可得到 D 点坐标【解答】解法 1:如图所示,将点 A 绕着点 B 顺时针旋转 90得到点 D,连接 AD,则ABD 是等腰直角三角形,BAD=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中小学 数学教师 招聘 选调 考试 模拟 检测 试卷 详细 参考答案 解析
限制150内