1.3非法拉第过程分析.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《1.3非法拉第过程分析.ppt》由会员分享,可在线阅读,更多相关《1.3非法拉第过程分析.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3 非法拉第过程及电极/溶液界面的性能法拉第过程:电极上发生氧化还原反应(电极反应)并 伴随电子在金属-溶液界面间转移(跃迁)的过程。这一过程遵守法拉第定律,即:因电流通过而引起的化学反应的量与所通过的电量成正比。电极反应导致的电流法拉第电流非法拉第过程:在电极-溶液界面间没有电荷转移,但是随 着电势变化,由于吸附和脱附过程发生以及双电层的充放电,导致电极-溶液界面结构发生变化,并引起电流流动,这种电流流动过程称为非法拉第过程。不遵循法拉第定律。1.3.1 界面电荷层界面电荷层1.3.2 双电层的结构双电层的结构1.3.3 研究电极溶液界面性质的意义研究电极溶液界面性质的意义1.3.4 零
2、电荷电势零电荷电势1.3.1 界面电荷层双电层(double layer):由于电极和溶液界面带有的电荷符号相反,故电极/溶液界面上的荷电物质能部分地定向排列在界面两侧。当性质不同的相接触时,在相界面上形成了不同性质的电势差。出现电势差的原因是带电粒子或偶极子在界面层中的非均匀分布。1.3.1.1 界面电荷层的形成+MS+MSMS+(a)离子双电层(b)吸附双电层(c)偶极双电层自发形成的双电层1.3.2 双电层的结构 在电极溶液界面存在着两种相间相互作用:(1)电极与溶液两相中的剩余电荷所引起的静电长程作用;(2)电极和溶液中各种粒子(离子、溶质分子、溶剂分子等等)之间的短程作用,如特性吸附
3、、偶极子定向排列等,它只在几个的距离内发生。电极溶液界面的基本结构静电作用使得符号相反的剩余电荷力图相互靠近,形成紧密的双电层结构,简称紧密层。热运动处使荷电粒子倾向于均匀分布,从而使剩余电荷不可能完全紧贴着电极表面分布,而具有一定的分散性,形成分散层。电极溶液界面的紧密双电层结构考虑了热运动干扰时的电极溶液界面双电层结构在金属相中,自由电子的浓度很大,可达1025 mol/dm3,少量剩余电荷在界面的集中并不会明显破坏自由电子的均匀分布,因此可以认为金属中全部剩余电荷都是紧密分布的,金属内部各点的电势均相等。在溶液相中,当溶液总浓度较高,电极表面电荷密度较大时,由于离子热运动较困难,对剩余电
4、荷分布的影响较小,而电极与溶液间的静电作用较强,对剩余电荷的分布起主导作用,溶液中的剩余电荷也倾向于紧密分布,形成紧密双电层。如果溶液总浓度较低,或电极表面电荷密度较小,那么离子热运动的作用增强,而静电作用减弱,形成紧密与分散层共存的结构。如果由半导体材料和电解质溶液组成电极体系,那么在固相中,由于载流子浓度较小(约为1017 mol/dm3),则剩余电荷的分布也将具有一定的分散性。金属与稀溶液界面的双电层结构半导体与稀溶液界面的双电层结构一、双电层结构模型1.Helmholtz模型(1879)“平板电容器”模型或“紧密双电层”模型。电极表面上和溶液中的剩余电荷都紧密地排列在界面两侧,形成类似
5、平板电容器的界面双电层结构(金属电极/高浓度溶液时)。紧密层优点:基本上可以解释界面张力随电极电势变化的规律和微分电容曲线上零电荷电势两侧各出现一个平台区;缺点:无法解释为什么在稀溶液中微分电容曲线上零电荷电势处会出现极小值,也没有触及微分电容曲线的精细结构(即电容随电极电势和溶液浓度变化而变化)。-电荷密度-介电常数2.Gouy-Chapman模型(扩散层模型)(1910-1913)扩散层零电荷电势无紧密层 溶液中的离子在静电作用和热运动作用下,按势能场中粒子的分配规律(Boltzmann分布律)分布在邻近界面的液层中,即形成“分散层”。分散层中的电势与距离呈曲线关系。优点:假设离子电荷为理
6、想的点电荷,可以较满意地解释稀溶液中零电荷电势附近出现的电容极小值;缺点:完全忽略了紧密层的存在,因而当溶液浓度较高或表面电荷密度值较大时,计算得出的电容值远大于实验测得的数值,而且解释不了微分电容曲线上“平台区”的出现。3.Stern模型(1924)Gouy-Chapman-Stern(GCS)模型溶液中离子受到电极表面的库仑静电力和热运动双重作用,库仑力试图使离子整齐的排列在电极表面附近,而热运动则力图使其均匀的分布在溶液中,这两种作用互相抗衡的结果是:部分电荷在靠近电极表面处形成紧密层,另一部分电荷分布在离电极表面稍远处形成扩散层。Stern 模型较好的反映了界面双电层的真实结构,可以较
7、满意地解释电容微分曲线上在零电荷电势附近出现的电容极小值和两侧出现“平台”的实验事实。Stern模型能比较好地反映界面结构的真实情况。但是,该模型在推导GCS方程式时作了一些假设:(1)把离子电荷看成点电荷并假定电荷是连续分布的;(2)假设介质的介电常数不随电场强度变化;(3)只简单地把紧密层描述成厚度不变的离子电荷层,忽略了紧密层组成的细节及由此引起的紧密层结构与性质上的特点。因此,GCS双电层方程式对界面结构的描述只能是一种近似的、统计平均的结果,而不能用作准确的计算。理论微分电容曲线1-0.1mM2-1mM3-10mM4-100mM可以较满意地解释电容微分曲线上在零电荷电势附近出现的电容
8、极小值和两侧出现“平台”的实验事实。4.Bockris,Devanathan,and Muller(BDM)模型对stern 模型进行了补充和修正,主要考虑两个方面:一个是溶剂化(水化)作用,一个是离子的吸附。MS+OHHq 0MS-OHHq 0MS+q =0电极溶液界面上的水分子偶极层溶液中的离子除了因静电作用而富集在电极/溶液界面外,还可能由于与电极表面的短程相互作用而发生物理吸附或化学吸附。这种吸附与电极材料、离子本性及其水化程度有关,被称为特性吸附。大多数无机阳离子不发生特性吸附,只有极少数水化能较小的阳离子,如Tl+,Cs+等离子能发生特性吸附。反之,除了 F-离子外,几乎所有的无机
9、阴离子都或多或少地发生特性吸附。有无特性吸附紧密层的结构是有差别的。当电极表面带负电时,双电层溶液一侧的剩余电荷由阳离子组成。紧密层将由水偶极层与水化阳离子 层串联组成,称为外紧密层。这些最近的溶剂化离子中心的位置称为外亥姆荷茨平面(OHP),它的厚度为从电极表面处到水化阳离子电荷中心的距离。若设x1 为第一层水分子层的厚度、x2为 一个水化阳离子的半径,则 d x1+x2.没有离子特性吸附时的紧密层结构如果阴离子水化程度较低,阴离子就有可能够溢出水化膜,如果这个阴离子能进行特性吸附的话,那它就会取代水偶极层中的水分子而直接吸附在电极表面上,这些吸附离子与水偶极子等组成内紧密层。阴离子电荷中心
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.3 法拉第 过程 分析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内