构建以新能源为主体的新型电力系统框架研究21604.pdf
《构建以新能源为主体的新型电力系统框架研究21604.pdf》由会员分享,可在线阅读,更多相关《构建以新能源为主体的新型电力系统框架研究21604.pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、构建以新能源为主体的新型电力系统框架研究 前言 碳达峰、碳中和目标的提出是国家重大战略决策,事关中华民族永续发展和构建人类命运共同体。在能源消费清洁低碳化的进程中,电力占据着能源体系的主导地位,同时电力系统发展面临着艰巨任务。考虑我国各类非化石能源资源禀赋以及开发利用的技术经济性,大力发展新能源是必然选择。建设以新能源为主体的新型电力系统,既是能源电力转型的必然要求,也是实现碳达峰、碳中和目标的重要途径。能源电力行业技术资金密集,存在高度的路径依赖,技术路线试错成本极高。构建以新能源为主体的新型电力系统是一项复杂的系统性工程,应超前研判、全面分析电力生产结构改变为电力系统带来的变化与挑战,深入
2、研究电力低碳转型路径及转型过程中的重大问题,力争就技术形态、技术方向等关键问题形成广泛共识。针对于此,本文从一次能源、电源、网络、负荷、平衡模式等方面着手,研究电力系统物质基础、技术基础将要发生的深刻变化,从电力可靠供应、新能源消纳、电网安全运行等方面探讨未来电力系统发展面临的直接挑战;阐述新型电力系统的内涵、构建原则和思路,划分新型电力系统的发展阶段,提出策略性发展建议,以期为电力行业中长期发展提供基础参考。电力系统转型带来的变化 电力系统实现碳达峰、碳中和目标的过程,伴随着传统电力系统向以新能源为主体的新型电力系统转型升级,相关物质基础和技术基础持续深刻变化。一是一次能源特性变化。电力系统
3、的一次能源主体由可存储和可运输的化石能源转向不可存储或运输、与气象环境相关的风能和太阳能资源,一次能源供应面临高度不确定性。二是电源布局与功能变化。根据我国风能、太阳能资源分布,新能源开发将以集中式与分散式并举,电源总体接入位置愈加偏远、愈加深入低电压等级。未来新能源作为主体电源,不仅是电力电量的主要提供者,还将具备相当程度的主动支撑、调节与故障穿越等“构网”能力;常规电源功能则逐步转向调节与支撑。三是网络规模与形态变化。西部、北部地区的大型清洁能源基地向东中部地区负荷中心输电的整体格局不变,近期电网规模仍将进一步扩大。电网形态从交直流混联大电网向微电网、柔直电网等多种形态电网并存转变。四是负
4、荷结构与特性变化。能源消费高度电气化,用电需求持续增长。配电网有源化,多能灵活转换,“产消者”广泛存在,负荷从单一用电朝着发/用电一体化方向转变,调节支撑能力增强。五是电网平衡模式变化。新型电力系统供需双侧均面临较大的不确定性,电力平衡模式由“源随荷动”的发/用电平衡转向储能、多能转换参与缓冲的更大空间、更大时间尺度范围内的平衡。六是电力系统技术基础变化。电源并网技术由交流同步向电力电子转变,交流电力系统同步运行机理由物理特性主导转向人为控制算法主导;电力电子器件引入微秒级开关过程,分析认知由机电暂态向电磁暂态转变;运行控制由大容量同质化机组的集中连续控制向广域海量异构资源的离散控制转变;故障
5、防御由独立“三道防线”向广泛调动源网荷储可控资源的主动综合防御体系转变。电力系统面临的问题与挑战 (一)电力供应保障 一是保障供应充裕的基础理论面临挑战。在全球气候变化、可再生能源大规模开发的背景下,可再生能源资源禀赋在长期演化过程中会发生显著变化。电源、电网的规划决策面临资源禀赋和运行双重不确定性且具有明显的路径依赖性。上述特征为传统资源禀赋评估与规划理论带来重大挑战。二是新能源小发时保障供应难度大。随着新能源发电的快速发展,可控电源占比下降,新能源“大装机、小电量”特性凸显,风能、太阳能小发时保障电力供应的难度加大。在碳中和阶段,火电占比将进一步下降,新能源装机规模持续提升,而负荷仍将保持
6、一定增长,实时电力供应与中长期电量供应保障困难更加突出。三是罕见天象、极端天气下的供应保障难度更大。日食等罕见天文现象将显著影响新能源出力;随着全球变暖、气候异常的加剧,飓风、暴雪冰冻、极热无风等极端天气事件不断增多增强,超出现有认知。罕见天象与极端天气具有概率小、风险高、危害大的特征,在新能源高占比情景下的影响极大,推高供电保障成本。(二)系统平衡调节 一是供需平衡基础理论面临挑战。随着新能源占比的持续提高,供需双侧与系统调节资源均呈现高度不确定性,系统平衡机制由“确定性发电跟踪不确定负荷”转变为“不确定发电与不确定负荷双向匹配”。供需双侧运行特性对气候等外部条件的依赖性较高,针对传统电力系
7、统建立的供需平衡理论亟需发展完善。二是日内调节面临较大困难。新能源出力的随机波动性需要可控电源的深度调节能力予以抵消,电力系统现有的调节能力已基本挖掘殆尽,近期仍需更大的调节能力以满足新能源消纳需求。远期新能源成为主力电源后,依靠占比不断下降的常规电源以及有限的负荷侧调节能力难以满足日内消纳需求。三是远期季节性调节需求增大。新能源发电与用电存在季节性不匹配,夏、冬季用电高峰期的新能源出力低于平均水平,而春、秋季新能源大发时的用电水平处于全年低谷。现有的储能技术只能满足日内调节需求,在新能源高占比情景下,季节性消纳矛盾将更加突出。(三)安全稳定运行 一是稳定基础理论面临挑战。新能源时变出力导致系
8、统工作点快速迁移,基于给定平衡点的传统 Lyapunov 稳定性理论存在不适应性。新能源发电有别于常规机组的同步机制及动态特性,使得经典暂态功角稳定性定义不再适用。高比例的电力电子设备导致系统动态呈现多时间尺度交织、控制策略主导、切换性与离散性显著等特征,使得对应的过渡过程分析理论、与非工频稳定性分析相协调的基础理论亟待完善。二是控制基础理论有待创新。传统电力系统的控制资源主要是同步发电机等同质化大容量设备。而在新型电力系统中,海量新能源和电力电子设备从各个电压等级接入,控制资源碎片化、异质化、黑箱化、时变化,使得传统基于模型驱动的集中式控制难以适应,需要新的控制基础理论对各类资源有效实施聚纳
9、与调控。三是传统安全问题长期存在。在未来相当长的时间内,电力系统仍以交流同步电网形态为主;但随着新能源大量替代常规电源,维持交流电力系统安全稳定的根本要素被削弱,传统的交流电网稳定问题加剧。例如,旋转设备被静止设备替代,系统惯量不再随规模增长甚至呈下降趋势,电网频率控制更加困难;电压调节能力下降,高比例新能源接入地区的电压控制困难,高比例受电地区的动态无功支撑能力不足;电力电子设备的电磁暂态过程对同步电机转子运动产生深刻影响,功角稳定问题更为复杂。四是高比例电力电子、高比例新能源(“双高”)的电力系统面临新的问题。在近期,新能源机组具有电力电子设备普遍存在的脆弱性,面对频率、电压波动容易脱网,
10、故障演变过程更显复杂,与进一步扩大的远距离输电规模相叠加,导致大面积停电的风险增加;同步电源占比下降、电力电子设备支撑能力不足导致宽频振荡等新形态稳定问题,电力系统呈现多失稳模式耦合的复杂特性。在远期,更高比例的新能源甚至全电力电子系统将伴生全新的稳定问题。(四)整体供电成本 新能源平价上网不等于平价利用。除新能源场站本体成本以外,新能源利用成本还包括灵活性电源投资、系统调节运行成本、大电网扩展与补强投资、接网及配网投资等系统成本。国内外研究表明,新能源电量渗透率超过 10%15%以后,系统成本将进入快速增长的临界点,未来新能源场站成本下降很难完全对冲消纳新能源所付出的系统成本上升;随着新能源
11、发电量渗透率的逐步提高,系统成本显著增加且疏导困难,必然影响全社会供电成本。新型电力系统的内涵、构建原则与思路 应对电力系统面临的问题与挑战,应科学构建新型电力系统,保障国家能源转型战略实施。构建以新能源为主体的新型电力系统,必须坚持系统思维,遵循电力系统的技术特点和客观规律,充分利用成熟技术、存量系统并深入挖掘潜力,“开放包容”支持新技术发展,积极稳妥、循序渐进实现转型。(一)新型电力系统的内涵 新型电力系统以新能源为供给主体,满足不断增长的清洁用电需求,具有高度的安全性、开放性、适应性。在安全性方面,新型电力系统中的各级电网协调发展,多种电网技术相互融合,广域资源优化配置能力显著提升;电网
12、安全稳定水平可控、能控、在控,有效承载高比例的新能源、直流等电力电子设备接入,适应国家能源安全、电力可靠供应、电网安全运行的需求。在开放性方面,新型电力系统的电网具有高度多元、开放、包容的特征,兼容各类新电力技术,支持各种新设备便捷接入需求;支撑各类能源交互转化、新型负荷双向互动,成为各类能源网络有机互联的枢纽。在适应性方面,新型电力系统的源网荷储各环节紧密衔接、协调互动,通过先进技术应用和控制资源池扩展,实现较强的灵活调节能力、高度智能的运行控制能力,适应海量异构资源广泛接入并密集交互的应用场景。(二)新型电力系统构建原则 坚持问题导向、目标导向和科学发展原则来构建新型电力系统,积极稳妥推进
13、转型。问题导向,即抓住新能源发展过程中的主要矛盾,兼顾当前困难与长远挑战,通过系统重构、技术与体制机制创新来突破新能源发展瓶颈。目标导向,即以按期实现碳达峰、碳中和目标为使命,选择适宜的技术路线,“倒排”发展路径,兼顾转型过程中能源电力安全。科学发展,即充分考虑能源电力行业资产、资金、技术密集,路径依赖较强的特点,切实体现电力系统的技术特点和发展规律,保持渐进过渡式转型发展。(三)新型电力系统构建思路 基于以上构建原则,研判未来新型电力系统技术形态,塑造适应全新电力生产结构的网络形态和平衡模式,在空间、时间上匹配电力供给与需求,据此设计技术可行、成本适当的发展路径。1.技术形态 在未来较长的时
14、间内,电力系统仍将以交流电技术为主导,主要原因有:一是当前全国电力系统资产规模超过 16 万亿元,90%的在运煤电装机容量投产不满 20a,庞大的存量系统仍以交流电技术为基础,不可能“急刹车”“急转弯”;二是未来火电、水电、核电等同步电源装机容量和发电量的占比均在不断下降,但仍占据相当的比例(见图 1),如到 2060 年同步电源预计仍占据装机容量的 25%、发电量的 44%,主要以“大开机、小出力”方式运行(出力占比可达 79%),为电力系统提供必要的调节与支撑。因此,未来的电力系统必将在传承中发展,长期保持以交流电为基础的技术形态,基本原理、技术要求不会发生根本性改变;交流电网仍是电力系统
15、的网架基础,各类电源直接或间接以交流电技术并入电网。2.网络形态 一是以交直流互联为大电网主干。我国能源资源与需求逆向分布的基本国情,新能源出力的随机性、强时空相关性,都决定了近期交直流互联大电网仍需扩大规模才能满足远距离大规模输电、新能源跨省/跨区消纳平衡的需求。二是多种组网形式并存。交流电力系统需要同步电源的支撑,难以适应新能源集中开发、海上风电、大量分布式新能源接入等局部场景;应鼓励发展分布式微网、纯直流电力系统等多种组网技术,因地制宜选择技术路线。3.平衡形态 力求以储能为媒介逐步实现发用电解耦。当前电力系统的实时平衡依赖出力可调的常规电源,而新型电力系统将以出力不可调节的新能源发电为
16、主体,发电侧调节能力显著下降;需要通过需求响应、多能互补等方式充分挖掘负荷侧的调节能力,同步开发能够与电能高效双向转换并可大量、长期存储的二次能源(储能),使“发用”实时平衡变为“发储用”实时平衡。4.发展路径 循序渐进构建新型电力系统。能源电力行业技术资金密集,已形成的庞大存量资产不可能“推倒重来”,适宜采取渐进过渡式发展方式。在近期,新能源快速发展的需求较为迫切,亟需成熟、经济、有效的技术与产品方案来应对相应挑战。着眼远期,当前电力系统的物质基础、技术基础难以匹配新型电力系统的需求,应在大规模储能、高效电氢转换、CCUS(碳捕集、利用与封存)、纯直流组网等颠覆性技术方面尽快取得突破;不同的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 构建 新能源 主体 新型 电力系统 框架 研究 21604
限制150内