二次根式的复习 (3).ppt
《二次根式的复习 (3).ppt》由会员分享,可在线阅读,更多相关《二次根式的复习 (3).ppt(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第22章章二次根式二次根式复习复习(一)(一)一一、二次根式的意义二次根式的意义形如形如 (a0)的式子叫做二次根式。)的式子叫做二次根式。1、a是非负数,即a0;2、是非负数,即 0.注意:注意:具有双重非负性具有双重非负性例例1、找出下列各根式:、找出下列各根式:中的二次根式。中的二次根式。答案答案:例例2、x为何值时,下列各式在实数范围内有为何值时,下列各式在实数范围内有意义。意义。x-xX为全体实数为全体实数X为全体实数为全体实数xx0且且x1x5且且x6变式变式练习:练习:1、能使二次根式、能使二次根式 有意义的实数有意义的实数x的值有(的值有()A、0个个 B、1个个 C、2个个
2、 D、无数个、无数个B2、已知、已知求求 算术平方根。算术平方根。x-70 ,7-x0 x=7y=9(xy-64)=(79-64)=(-1)=1解:解:x7,x7二、二次根式的性质二、二次根式的性质例例3、计算、计算(4)12-3变变式应用式应用1、式子、式子 成立的条件成立的条件是(是()D2、已知三角形的三边长分别是、已知三角形的三边长分别是a、b、c,且且 ,那么,那么 等于(等于()A、2a-b B、2c-bC、b-2a D、b-2CD例例4、把下列各式写成平方差的形式,、把下列各式写成平方差的形式,再分解因式;再分解因式;解:解:原式原式=(2x)-()=(2x+)(2x-)解:解:
3、-32原式=()a2=(a+3)(a-3)=(a+3)a-()=(a+3)(a+)(a-)例例4、把下列各式写成平方差的形式,、把下列各式写成平方差的形式,再分解因式;再分解因式;解:解:原式=-=解:解:原式=例例5、化简、化简解:解:原式=(x-4)-x-2=x-4-(x-2)=x-4-x+2=-2提示:解题时一定要注意题目中的隐含提示:解题时一定要注意题目中的隐含 条件条件x4.例例6已知已知互为相反数,求互为相反数,求a、b的值。的值。解:解:即即 a-b+6=0,a+b-8=0解得 a=1 b=7课堂小结课堂小结一、二次根式的意义一、二次根式的意义形如形如 (a0)的式子叫做二次根式。)的式子叫做二次根式。2、a是非负数,即a0;3、是非负数,即 0.二、二次根式的性质二、二次根式的性质1、根指数是2;作业布置作业布置教材教材14页复习题:页复习题:3题、题、4题、题、7-11题题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次根式的复习 3 二次 根式 复习
限制150内