纳米材料与隐身技术.doc
《纳米材料与隐身技术.doc》由会员分享,可在线阅读,更多相关《纳米材料与隐身技术.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、纳米材料与隐身技术摘要:本文对纳米技术及纳米材料进行了综述,重点对纳米材料的特性以及纳米复合材料在隐身技术上的应用进行了介绍。同时对纳米复合隐形材料的研究前景进行了展望。1.纳米材料简介把组成相或晶粒结构的尺寸控制在100nm以下的具有特殊功能的材料称为纳米材料。即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料。这大约相当10100个原子紧密排列在一起的尺度。纳米磁性材料是20世纪80年代出现的一种新型磁性材料。纳米材料结构单元的尺寸介于1纳米100纳米范围之间,由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
2、并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。 纳米粒子的粒径(10100nm)小于光波的长,因此将与入射光产生复杂的交互作用。金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈
3、对比。纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。2.纳米材料的特性(1)表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10nm时,微粒包含4000个原子,表面原子占40%;粒子直径为1nm时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别
4、为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。 (2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现出“新奇”的现象。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将太阳能转变为热能、电能,此外又有可能应用于红外敏感元件、红外隐身技术等等。 (3)量子尺寸效应
5、 当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化。例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明。 (4)宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。基于纳米材料的诸多特性,纳米材料成为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑。
6、纳米材料在医学,环境,军事以及家电行业,电子工业,计算机产业,纺织工业,机械工业等民用产业方面具有重要用途。本文主要介绍其在军事上的用途。3.纳米材料与隐身技术隐身技术始于第二次世界大战。隐身技术作为提高武器系统生存能力和突防能力的有效手段,已成为集陆、海、空、天、电五维一体的现代多维战争中极为重要和有效突防的战术技术手段,被当今世界各国视为重点开发的军事高新技术,尤其是随着雷达探测技术的发展,原有的隐身技术面临着很大的挑战,迫切需要厚度薄、质量轻、频带宽、多功能的新型隐身材料。隐身材料是隐身技术发展的关键方面之一。近几年来,对纳米材料的研究不断深入,证明纳米材料具有极好的吸波性能,纳米材料现
7、已受到各主要国家的高度重视,并把其作为新一代隐身材料进行探索与研究。纳米吸波材料纳米吸波材料具有极好的吸波特性,同时具备吸波频带宽、兼容性好、质量轻和厚度薄等特点。纳米粒子对红外和电磁波有强烈的吸收能力主要原因有两点,一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米粒子材料对这种波的透过率比常规材料要强得多,这就大大减少了波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的目的。另外一方面,纳米微粒材料的比表面积比常规粗粉大了34个数量级,对电磁波的吸收率也比常规材料大得多,这就使得红外本文受国家航天创新基金资助探测器及雷达得到的反射信号强度大大降低,因此很难发现被
8、探测目标,起到隐身作用。金属、金属氧化物和某些非金属材料的纳米级超细粉在细化过程中,处于表面的原子数越来越多,增加了纳米粒子的活性。在微波场的辐射下,原子和电子运动加剧,促使磁化,使电子能转化为热能,从而增加了对电磁波的吸收。美国研制出的“超黑粉”纳米吸波材料,对雷达波的吸收率大于99%。目前,隐身材料虽在很多方面都有广阔的应用前景,但当前真正发挥作用的隐身材料大多使用在与航空航天或军事有密切关系的部件上。对于上天的材料有个重要的要求是重量轻,在这方面纳米材料是有优势的,特别是由轻元素组成的纳米材料在航空隐身材料中应用十分广泛。纳米技术在吸波材料的以下几个方面有突出作用:一、 改性原有基体材料
9、与损耗介质材料的性质根据吸波机理的不同,吸波材料中的损耗介质可以分为电损耗型和磁损耗型两大类。其中电损耗型介质有导电性石墨、碳化硅粉末或碳化硅纤维、特种碳纤维、碳粒、金属短纤维、钛酸钡陶瓷体和各种导电性高聚物等。其主要特点是具有较高的电损耗正切角,依靠介质的电子极化或界面极化衰减。吸收电磁波。磁损耗型介质包括各种铁氧体粉、羰基铁粉、超细金属粉和纳米相材料等,具有较高的磁损耗正切角,依靠磁滞损耗、畴壁共振和后效损耗等磁极化衰减吸收波。当这些粒子的尺寸进人纳米级别后,相应的多畴变成单畴,使得这些粒子的物性呈现了独特的吸波性能。研究表明,1025nm的铁磁金属微粒矫顽力比相同的宏观材料大1000倍。
10、对于陶瓷材料而言,当它到达纳米尺寸时,表现出了高韧性,高热强,高塑性等平时欠缺的特性。所以纳米技术的应用使这些吸收剂的吸波性能有很大提高。二、 纳米复合物各种材料具有不同的吸波特性,适应不同的波段,而目前吸波材料的一个主要研究方向就是多频率。所以如果能复合这些材料,会使吸波材料的应用范围大大加宽。这些材料并不是无机相与有机相的的简单加合,两相界面间只存在较强或较弱的化学键。它们的复合将实现集无机、有机、纳米粒子的诸多特异性质于一身的新材料。特别是无机和有机的界面特性使其具有更广阔的应用前景。有机材料优异的光学性质、高弹性和韧性,以及易加工性,可改善无机材料的脆性;更主要的是,有机物的存在可以提
11、供一个优异的载体环境,提高纳米极无机相的稳定性,从而实现其独特的微观控制,在光电磁催化等方面的特性能得到更好的发挥,甚至可能产生奇异特性的新型材料。然而单纯的无机纳米粒子是不易分散于有机物中的,有机物与无机粒子之间常有严重的相分离现象。有机无机相间应存在较强的相互作用,才能较好的利用有机基质来防止无机纳米微粒的团聚,使纳米微粒能长期稳定的存在。所以制备复合吸波材料并不仅仅是无机相和有机相单独的纳米技术,更主要的是复合的纳米技术。材料的分子设计十分重要。近年来发展建立起来的制备方法也多种多样,可大致归为四大类:纳米单元与高分子直接共混;在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 纳米 材料 隐身 技术
限制150内