材料科学与工程11-20专业英语翻译.doc
《材料科学与工程11-20专业英语翻译.doc》由会员分享,可在线阅读,更多相关《材料科学与工程11-20专业英语翻译.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、材料科学与工程专业英语参考翻译(11-20)专业:材料物理 姓名:43110103刘 伟 吉林大学材料科学科学与工程材料物理 154223585711微结构、加工过程和应用之间的联系 微结构、加工过程和应用之间的联系材料科学与工程领域经常是根据四大方面合成与加工,结构与组成,性质和性能之间的相互联系来定义的。为了理解任意材料的行为(性能表现)与性质,有必要去了解它的结构。结构可以从几个水平层次来考虑,这些都会影响材料的最终行为(性能表现)。能够对材料的颜色、电导性和磁性产生影响的电子构型是材料的最精细的水平。原子中的电子排布方式影响它是如何与其他原子结合的。这(结合方式)反过来又对晶体结构有着
2、重大影响;结晶陶瓷具有非常规则的原子排列,然而,这种长程有序的排列在非晶体和无定型陶瓷中却不存在,尽管在局部我们可以看到相似的多面体结构。这种材料相对于它们的晶体经常表现出不同的行为。我们不仅要考虑具有完美晶格和理想结构的情况,也要顾及到材料中不可避免的结构缺陷的存在,甚至是无定型的,这类缺陷例如杂质原子和位错。多晶陶瓷的结构由许多晶粒组成。晶粒的尺寸,形状和位向在这些材料的许多微观性质中扮演者重要的角色,例如力学强度。在大多数陶瓷中,多相共存,每一相都有自己独特的结构、组成和性质。对材料中的这些相的类型、尺寸、分布和总量的控制为控制性质提供了一种方式。陶瓷的微观结构通常情况下是它所经历的加工
3、过程的结果。例如,热压处理的陶瓷一般情况下只有极少数孔隙,烧结材料很少有这种现象。通过这篇课文,结构、加工过程和性质之间的相互联系将会很明显地显示出来。但这里用5个例子来说明。1. 根据霍尔派奇方程,多晶陶瓷的强度取决于晶粒尺寸。一般来说,晶粒尺寸降低时,强度升高。晶粒尺寸是由初始粉体颗粒的大小和它们的凝结方式所决定的。多晶陶瓷中的境界也很重要。强度自然取决于材料是否纯净、是否包含第二相或孔隙,抑或晶界处的玻璃态。对于纳米陶瓷来说,这些关系却并非总是非常明显的。2. 透明或者半透明陶瓷需要限制由气孔和第二相粒子引起的光的散射。通过热压处理可使孔径减小从而得到高密度产品。这种方法应用在光电领域制
4、出了透明的PLZT陶瓷,例如短暂失明护目镜。3. 因为杂质的存在,主要是能够散播声子的氧气的存在,导致商业上应用的多晶体AlN的热导性通常比预计的理论值要低。添加稀土或碱金属氧化物(分别加Y2O3)作为吸气剂可以减少氧含量。这些氧化物要在AlN成型前与AlN混合。在氧化物添加剂和涂在AlN晶粒表面的氧化物之间形成的第二相,隔离了三相点(?)。4. 软铁氧体如在一系列不同的设备中得到应用。举个例子,在电视显像管中用作移动电子束的轱辘。软铁氧体的磁导率是晶粒尺寸的一项功能。大的无缺陷晶粒是首选,因为我们正是需要这种移动磁畴壁。缺陷和境界钉扎在畴壁处会很难使磁化强度达到饱和。5. 因为氧化铝陶瓷具有
5、很高的电阻率和低介电常数,所以它可以作为绝缘体。很多情况下纯净的氧化铝是不会被用到的。取而代之的是我们将氧化铝和硅酸盐混合,降低烧结温度。这样的材料称为低强氧化铝,在氧化铝晶粒间含有玻璃态硅酸盐相。低强氧化铝通常情况下比纯氧化铝有高的导电率(低的电阻率),在火花塞上用到。安全涉及材料的工作,安全考虑应该放在第一位。与陶瓷工作相关时,几项重要的预防措施要被采取。有毒粉末包括例如Pb或Cd,氟化物应该有所了解。在运输时,厂方要提供关于产品危害方面的信息。阅读这些信息并保持它们容易获取是很重要的。一些标准资源提供与有毒粉末和可接受的风险水平的信息,在“参考书”都有给出。小颗粒应该是不能被吸入人体内的
6、。自从19世界60年代这些影响众所周知,文献中也都有,但起经常被忽视。适当通风,改善卫生和防护服已经显著地降低了许多工业风险的发生频率。处理任何粉末(有毒或者无毒材料)都应当格外小心。最具危险的被认为是颗粒尺寸1微米;大颗粒不会在空气中停留住够长的时间而被吸入体内,即使被吸入,也不能与上呼吸道曲折的轮廓发生信息交流。目前纳米粉体的毒性与环境影响还没有被明显提出,但它却是许多研究的主题,2004年英国皇家科学院的研究报告就是其中一例。高温处理在很多陶瓷加工过程中被用到。高温对人体的影响是很明显的,不那么明显的是热的东西到底怎么影响的。表格3.3给出了温度的颜色标度。从制表中可以看出,400度的铝
7、管颜色没有变化但会灼伤皮肤。有机物在加工过程中被用作溶剂和粘合剂。传统上,有机材料在陶瓷加工过程中充当很小的角色。现在他们被广泛地应用在成型处理上。再次强调,生产厂家要在他们运输的产品中提供安全数据表单,这些信息十分重要,要仔细阅读。约定俗成的是,使用材料时,材料安全数据表单应该容易阅读;很多时候他们要被保存在实验室中。12生物陶瓷生物材料是应用到医疗器械中并与生物系统发生相互作用的一种非活性材料。生物陶瓷领域相对来说较新,直到20世纪70年代才出现。不过,许多生物陶瓷却不是新材料。其中一种最重要的是Al203-许多传统陶瓷产品的一项组成成分。 如果一种接近惰性的材料被植入体内将会引起一种保护
8、反应,这种反应可引起非粘着性纤维层的包裹,厚度大约1微米。随着时间流逝,将会以移植失败告终。当金属和聚合物植入人体时也会发生类似反应。但被植入人体内时,具有生物活性的陶瓷将会以以下方式结合组织界面模仿人体自然修复过程。例如HA的生物活性陶瓷可以以(体相形式)或者复合物的组成成分抑或涂层来使用。可被吸收的生物陶瓷,例如TCP,的确可以在身体内溶解并被周围组织所取代。这是一项很重要的要求,当然,可溶性产品必须是无毒的。以HA为例,TCP经常用作涂层而非体相形式,亦可以以粉体形式来使用,例如填充在骨内空间中。生物陶瓷在临床上已得到大量应用。使用的范围遍及全身,包括修复骨头、关节和牙齿。当现有的机体部
9、分发生病变、损坏或只是简单的磨损时,这些修复就会变得很有必要。还有很多其他的生物陶瓷的应用包括心脏瓣膜上的热解碳涂层和治疗某些肿瘤具有特殊放射性的玻璃成分。陶瓷的优势和劣势选取作为特殊应用的材料时我们必须作出选择。材料选取在任何复合材料设计加工过程中都是至关重要的,尤其对于用来移植和其他医疗器具来说。我们能进行承载应用的三种主要材料是金属,聚合物和陶瓷。陶瓷优于其他移植材料的地方在于陶瓷的生物兼容性。一些在生理环境中是惰性的,其他的在身体内却能发生可控反应。大多数陶瓷的不利之处在于低硬度(影响其可靠性),高的弹性模量(导致应力屏蔽)。增加陶瓷硬度的一种主要方式为形成复合材料。陶瓷可以是增强相,
10、或为基体抑或兼具两者。举个聚合物的例子利用生物陶瓷进行基体复合增强的掺有HA颗粒增强项的PE。复合材料的硬度比HA的高,弹性模量也更接近骨头。生物陶瓷也会用做金属基片的涂层。不锈钢生物活性玻璃涂层就是一个例子,它主要是利用钢的强度和韧性以及玻璃的表面活性特征。陶瓷移植对陶瓷移植的要求取决于它将在身体中扮演的角色。例如、全髋关节置换术的要求和中耳移植的要求迥异。不过有两个基本标准:(1)、陶瓷应与生理环境相兼容;(2)力学性质应与被取代的组织相匹配。大多数陶瓷移植跟骨头有关。骨头是由细胞和血液供给系统组成的活性材料,由强度较好的复合结构包裹。这种复合材料是由非常有弹性以及韧性的骨胶原和与该羟基磷
11、灰石极为相似的钙磷灰石晶体组成的;与HA很相似,我们将会继续生产(?)。正是HA组分使得骨头有了硬度。在骨胶原组织中这种针状的磷灰石晶体20-40nm长,1.5-3nm宽。与生物陶瓷应用有很大联系的多种类型的骨头中的两种是骨松质(海绵骨)和骨皮质(密质骨)。骨松质比骨皮质密度低。骨骼的每一块骨头都是外层致密的骨皮质(密质骨)覆盖在海绵骨上组成的,以小到针孔的蜂窝状或以被称为骨小梁的平坦片状形式存在。因为骨松质的密度较低,所以它的弹性模量比骨皮质低,断裂应变率比骨皮质高。两种骨头都比软骨组织的弹性模量高,例如肌腱和韧带。不同类型的连接组织的弹性模量不同,这种不同能够保证在骨、骨与骨之间以及肌肉与
12、骨之间存在一个机械应力光滑梯度。植入体的力学性质很明显十分重要。如果植入体比它将要取代的骨的弹性模量高,称为应力屏蔽的问题接着就会发生。应力屏蔽会削弱负载最低或者负载压缩区域的骨头(骨头必须负载拉伸应力以保持健康)。骨头在被卸载或者加载压力的时候会经历生物转变引起骨吸收。利用降低弹性模量的方法来排除应力屏蔽是生物陶瓷复合材料发展的一个主要目的。氧化铝和氧化锆氧化铝和氧化锆是两个惰性相近的生物陶瓷。长期处于体液包围中,他们经历很少的或者几乎没有化学转变。高密度高纯度的氧化铝被大量的用于植入物,特别是在需要承载压力的髋关节修复和移植中。到2006年,超过106髋关节假体用氧化铝球作为股骨头替代品。
13、尽管一些氧化铝牙齿植入体是用单晶制成的,但大部分氧化铝植入体是由细晶组成的多晶氧化铝。通常情况下是在16001800度下通过压缩烧结而成。少量氧化镁(0.5%)也被加入,抑制晶粒长大,从而在无需高压条件下便可以烧结得到高密度产品。任何移植材料打的一项重要要求就是它要比病人“活”的久。由于陶瓷失效的概率本质问题,对每个植入体来说,不可能提供具体的绝对的预测使用期限。研究表明,可能像你期待的那样,负荷的增加以及时间的延长会增加失效的概率。老化和疲劳的研究结果表明,氧化铝植入物要具有可能最高标准的质量保障,尤其是它们用于年轻患者的矫正假肢上。尽管氧化铝陶瓷结合了优秀的生物兼容性和杰出的抗磨损能力,但
14、它仅有一般的抗弯强度和较低的硬度。这将移植(用来替换的)髋关节的直径限制在32mm以下,氧化锆有较高的断裂强度和抗弯强度,且比氧化铝陶瓷的弹性模量低。不过这与ZrO2有关: 浸没在体液中时,氧化锆的抗弯强度和硬度稍稍降低,原因与从正方晶系到单斜晶系相发生的马氏体转变有关。人们已经观察到在非水溶剂中的相似的转变;氧化锆的抗磨损能比氧化铝查,在陶瓷或陶瓷复合材料中,氧化锆的磨损率远远高于氧化铝的磨损率,与超高分子量聚乙烯结合的聚合物的过度磨损也会发生; 氧化锆也许会少量富集半衰期较长的例如Th和U的放射性元素,分离这些元素的技术难以实现,代价高昂。主要关心的在于它们会释放粒子,可以对身体软硬组织造
15、成毁灭性打击。这里有许多关于氧化锆陶瓷辐射排放的长期效应问题,尽管这种作用很小。 13 聚合物的介绍 聚合物是由重复的结构单元通过化学键连接在一起组成的大分子。这个单词由希腊字母“”衍生出来。Poly的意思是很多,meros表示部分的。聚合物众所周知的包括塑料、DNA和蛋白质。举个例子,聚丙烯的重复结构单元如下所示: 零零圈圈窟窿窟窿洞聚合物的俗名叫做塑料,这个词指的是一大类具有许多性质和用途的天然材料和合成材料。天然聚合物材料例如虫漆和琥珀,已经使用几个世纪了、生物高分子例如蛋白质和核酸在生命活动中起着至关重要的作用。聚合物的研究领域涉及聚合物化学、聚合物物理和聚合物科学。历史进展始于181
16、1年,Henri Braconnot在纤维素衍生出的化合物做的开创性工作可能是高分子科学最早的重要贡献。术语“polymer”由Joris,Jakob,Berzelius在1833年首次提出。19世纪后期橡胶硫化上取得的进展提高了天然聚合物橡胶的耐磨性,也标志着半合成聚合物的首次通用。1907年,Leo Baekeland 通过精确控制温度和压力使苯酚和甲醛发生反应,首次得到了全合成聚合物酚醛树脂(电木),并与1909年公诸于众。尽管对聚合物的合成与表征取得了巨大的进展,但是直到20世纪20年代,对聚合物分子的结构的正确理解初见端倪。而在此之前,科学家一直相信聚合物只是小分子团聚在一起(称为胶
17、质),并没有固定的分子量,被一种未知的力结合在一起,也就是所谓的关联理论。1922年,Hermann Staudinger 提出聚合物是由共价键结合在一起组成的长链结构所构成,在十数年间这个想法并没有被广泛接受,但也因为他的想法Staudinger最终被授予诺贝尔奖。Wallace Carothers在20世纪20年代的工作中也阐述了聚合物通过定向方式从他们的构成单体合成而来。对于聚合物科学的一项重要贡献是由在Ziegler-Natta催化剂取得重大进展而获得1963年诺贝尔化学奖的意大利化学家GIulio Natta和德国化学家Karl-Ziegler做出的。在本世纪末期,诸如尼龙、聚乙烯、
18、特氟隆(聚四氟乙烯)和硅树脂等合成聚合物材料是聚合物工业萌芽的基础。这些年在定向合成聚合物的工作上业已取得了重大的进步。现在商业上重要的聚合物基本都是利用有机合成技术进行全合成并大量生产。聚合物的合成聚合物的合成是一个把叫做单体的小分子通过共价键的结合形成链的过程。在聚合过程中,一些化学基团会会从每个单体上脱去。参与形成聚合物不同片段的各单体叫做重复单元或者单体残基。实验室合成: 实验室合成方法一般分为两类:缩聚和加聚。当然,一些新方法例如等离子聚合不分属其中任何一类。合成聚合物的反应可能也有催化剂的参与。利用实验室合成方法进行生物大分子的定向合成,尤其是人工合成蛋白质,是一个很热门的研究方向
19、。生物合成:生物大分子主要有3个分类:聚糖、聚缩氨酸、聚核苷酸。在活细胞中可以通过酶促反应过程将他们合成出来。例如,DNA的行程就是由DNA聚合酶催化得到的。蛋白质的合成涉及转录来自DNA和持续翻译将氨基酸合成特定蛋白质的信息的多种酶促反应过程。蛋白质在翻译之后会进一步得到修饰以使其具有适当的结构和功能。天然聚合物的改性很多商业上重要的聚合物都是通过天然存在的聚合物进行修饰合成而来。代表例子包括硝酸和纤维素形成硝酸纤维的反应和用存在的硫对天然橡胶加热而得到的硫化橡胶。聚合物结构聚合物的结构性质与沿着主链上单体残基的排布息息相关。结构对聚合物的其它性质有很大程度上的影响。举个例子,线性链状聚合物
20、是否溶于水取决于它的单体是极性的(例如环氧乙烷)还是非极性的(例如苯乙烯)。另一方面,尽管天然橡胶的两个样品可以是由相同的单体组成,但是它们也可以展示出不同的性质。聚合物科学家已经提出相应的术语来精确描述单体的特征(nature?)和它们的相关排布。单体特性(identity):一般来说,组成聚合物单体的特性是聚合物第一位也是最重要的属性。重复单元也就是聚合物重复排列的单元,也是聚合物最明显的特征。聚合物的命名一般是基于组成聚合物单体的类型来说的。只包含一种单体的聚合物即为所熟知的均聚物,由多种单体组成的称为共聚物。举个例子,聚苯乙烯,仅有苯乙烯单体组成,所以归类为是聚物;乙烯基醋酸纤维包含多
21、种单体,所以是一个共聚物。某些生物聚合物是由一系列不同的但是结构上相联系的单体,例如,聚核苷酸是核苷酸组成的。一个常见的错误就是用单体来代替指聚合物的重复单元。事实上,两者是不同的。单体是将被用来作为聚合反应开始的稳定分子。然后单体至少脱去两个化学基团形成重复单元。举个简单的例子聚乙烯,单体是乙烯分子,重复单元是C-C-。包含离子单元的聚合物也叫做聚合电解质。离子交联聚合物是聚合电解质的一个子集,占据其中的一小部分。(?)链的线性: 聚合物链的直观线性形貌是在液体介质表面用原子力显微镜(AFM)观察到的。最简单的聚合物的形式是一条直链或称之为线性聚合物,仅有一条主链组成。无支链的聚合物的柔顺性
22、是由它的持久长度来表征的。支链聚合物分子是由一条主链和一个或者多个侧链或者分支构成。支链聚合物的典型例子包括星型聚合物、梳形聚合物和刷状聚合物。如果聚合物包含有一条与主链的组成和构型不同的侧链,称之为接枝聚合物。交叉结合的聚合物表明聚合物是从一个节点向四个或者更多的方向呈放射状分布。具有高交联度的聚合物分子能够形成聚合物的网状结构。足够高的交联度也会形成“无线网络”,即为“凝胶”。链的网状结构无限延伸,所以有的链交联成一个大分子。链长:聚合物本体性质很大程度上依赖于其链的尺寸。与任何分子一样,一个聚合物分子的大小可以用分子量或者分子质量来描述。聚合物的分子质量可以用聚合度来表示,本质上就是组成
23、聚合物单体的数目。对于合成聚合物来说,分子量是由对样品中分子量的统计来描述的。因为事实上,工业合成过程并不会得到单一尺寸链的聚合物。统计的例子包括数均分子量和重均分子量。比值为分子量分布指数(多分散系数)。一般用描述分子量分布的“宽度”。聚合物链的最大长度是伸直长度。14软质材料 :聚合物和塑料很长时间以来人们把天然形成的聚合物,例如羊毛、皮革、丝和天然橡胶加工成为有用的材料。在过去的70年左右,化学家开始通过控制化学反应使单体聚合,从而形成聚合物。大量合成的聚合物具有-C-C-骨架,这是因为碳原子具有与其它原子更强跟稳定键的优异性能。塑料是一种通常经过热压处理后可以被塑成各种形状的材料。热塑
24、性材料是一类(加热固化冷却后)可以被再次加工成型的。举个例子,塑料牛奶容器是由一被称为聚乙烯的聚合物材料制成的,该聚合物具有很高的分子质量。这些容器可以被融化,得到的聚合物还可以经循环为其它所用。相反,热固性材料是通过不可逆化学过程形成的,因此不能被再次加工成型。高弹体是一类表现出橡胶或弹性行为的材料。假如没有超过弹性限度,拉伸或者弯曲,撤除变形力后它依旧可以回来原来的形状。一些聚合物,例如尼龙和聚酯,可以加工成纤维,就像毛发一样,相对于它们的横截面积而言非常长,这一特点与弹性无关。这些纤维可以被编织成纤维织物或绳索,亦可以做成衣服、轮胎帘布(帘子线)或者其他有用的物件。合成(制造)聚合物聚合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料科学 工程 11 20 专业 英语翻译
限制150内