初中数学教学设计最新9篇.docx
《初中数学教学设计最新9篇.docx》由会员分享,可在线阅读,更多相关《初中数学教学设计最新9篇.docx(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学教学设计最新9篇学习者分析: 篇一 1、在学习本课之前应具备的基本知识和技能: 同类项的定义。 合并同类项法则 多项式乘以多项式法则。 2、学习者对即将学习的。内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。 数学初中教学设计 篇二 教学目标 1、经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。 2、通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。 3、通过丰富有趣的拼图活动,经历观察、比较
2、、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。 4、通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。 重点 1、通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。 2、通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。 难点:利用数形结合的方法验证公式 教学方法:动手操作,合作探究课型新授课教具投影仪 情景设置: 你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。) 新课讲解: 把几个图
3、形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示: 教师接着在介绍教材第94页例题的拼法及相关公式 提问:还能通过怎样拼图来解决以下问题 (1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式; (2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2 试用拼一个长方形的方法,把这个二次三项式因式分解。 这个问题要给予学生充足的时间和空
4、间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作 了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。 小结: 从这节课中你有哪些收获? (教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。) 学生回答 a(b+c+d)=ab+ac+ad (a+b)(c+d)=ac+ad+bc+bd (a+b)2=a2+2ab+b2 学生拿出准备好的硬纸板制作
5、给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。 初中数学优秀教学设计 篇三 教学目标: 1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式; 2、使学生分清常量与变量,并能确定自变量的取值范围。 3、会求函数值,并体会自变量与函数值间的对应关系。 4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。 5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。 教学重点:了解函数的意义,会求自变量的取值范围及求函数值。 教学难点:函数概念的抽象性。 教学过程: (一)引入新课:
6、 上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。 生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗? 1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。 2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。 解:1、y=30n y是函数,n是自变量 2、n是函数,a是自变量。 (二)讲授新课 刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量
7、的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。 例1、求下列函数中自变量x的取值范围。 (1)(2) (3)(4) (5)(6) 分析:在(1)、(2)中,x取任意实数,与都有意义。 (3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求。 同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且。 第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零。的被开方数是。 同理,第(6)小题也是二次根式,是被开方数,小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分
8、母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。 注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。 但象第(4)小题,有些同学会犯这样的错误,将答案写成或。在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里与是并且的关系。即2与-1这两个值x都不能取。 例2、自行车保管站在某个星期日保管
9、的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元。 (1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式; (2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。 解:(1) (x是正整数, (2)若变速车的辆次不小于25%,但不大于40%,则收入在1225元至1330元之间 总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。 对于函数,当自变量时,相应的函数y的值是。60叫做这个函数当时的函数值。
10、例3、求下列函数当时的函数值: (1)(2) (3)(4) 注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应。以此加深对函数的理解。 (二)小结: 这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。 作业:习题13.2A组2、3、5 今天的内容就介绍到这里了。 初中数学教学设计 篇四 一、案例背景介绍 (一)教学环境 在我们着手进行课
11、题初中数学分层教学方式与策略研究的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。 (二)学生情况 我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。 (三)教材情况 本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相
12、切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。 二、案例内容设计及说明 环节一:复习引入 通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况相切 环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。 环节二:新知探究
13、活动 1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。 环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。 2、将判定的题设和结论互换后的探究。 环节说明:反证法在过三点做圆时已有所涉及,所以
14、在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。 环节三:巩固和应用 通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。 环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一
15、样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。 环节四:课堂小结 在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。 环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表
16、见解并证明。 环节五:拓展练习 通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。 环节六:作业布置 通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。 环节说明:作业 1、重点面向学困生考察其掌握基础的程度。作业 2、针对待优生夯实基础的基础上,提高其运用能力。作业 3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。 三、案例分析与反思 实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层
17、中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。 初中数学教学设计 篇五 课题: 12.3等腰三角形 教学内容: 新人教版八年级上册十二章第三节等腰三角形 设计理念: 教学的实质是以教材中提供的素材或实际生活中的
18、一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。 教材的地位和作用分析 等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。 另外,本堂课通过“活动探究”、“观察猜想证明”等途径,进一步培养学生的动手能力、
19、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。 教学内容的分析 本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学
20、习方式。 在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。 在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自己的数学思维和能力,发展学生应用数学的意识。 二、目标及其解析 教学目标: 知识技能: 1了解等腰三角形的概念,认识等腰三角形是轴对称图形;2经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明; 3掌握等腰三角形的性质,能运用等腰三角形的性
21、质解决生活中简单的实际问题。 数学思考: 1经历“观察?实验?猜想?论证”的过程,发展学生几何直观; 2经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力、 解决问题: 1能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验; 2在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性、 情感态度: 1、经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心; 2、经历运用等腰三角形解决实际问题
22、的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用; 3、在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益、 教学重点: 等腰三角形的性质及应用。 教学难点: 等腰三角形性质的证明。 解析 本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下: 1了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求: 理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边 知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 教学 设计 最新
限制150内