新人教版八年级上册数学导学案第11章三角形535.pdf





《新人教版八年级上册数学导学案第11章三角形535.pdf》由会员分享,可在线阅读,更多相关《新人教版八年级上册数学导学案第11章三角形535.pdf(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新人教版八年级上册数学 导学案 第 11 章 三角形 11.1 与三角形有关的线段 11.1.1 三角形的边 学习目标:1、认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2、懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.学习重点:1、对三角形有关概念的了解,能用符号语言表示三条形.2、能从图中识别三角形.学习难点:1、通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.2、用三角形三边不等关系判定三条线段可否组成三角形.课前预习 指导学生预习课本 P2-4,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角
2、?有几个顶点?(3)三角形 ABC 用符号表示_.(4)三角形 ABC 的边 AB、AC 和 BC 可用小写字母分别表示为_.(5)三角形按边、角可以分成几类?课内探究 自主完成合作探究进行交流展示、精讲精评。探究一:学生活动:1 交流在日常生活中所看到的三角形.2 选派代表说明三角形的存在于我们的生活之中.3 板书:在黑板上老师画出以下几个图形.4、三条线段 AC、CB、AB 是否首尾顺序相接.5、观察发现,以上的图,哪些是三角形?6、描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.a.不在一直线上的
3、三条线段.b.首尾顺次相接.探究二:1、在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?2、三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?【拓展延伸】1.已知三角形的三边长分别为 2,x-3,4,求 x 的取值范围 2、若 a、b、c 是ABC 的三边,请化简|a-b-c|+|b-c-a|+|c-a-b|3、如图,点P 是ABC内一点,试证明:AB+ACPB+PC.4、如图,已知点P 是ABC内一点,试说明PA+PB+PC 21(AB+BC+AC).当堂检测 PCBA1、画出一个ABC,假设有一只小虫要从 B 点出发,沿三角形的边爬到 C,它
4、有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定回答以上问题:(1)小虫从 B 出发沿三角形的边爬到 C 有如下几条路线 a.从 BC b.从 BAC (2)从 B 沿边 BC 到 C 的路线长为 BC 的长.从 B 沿边 BA 到 A,从 A 沿边 C 到 C的路线长为 BA+AC.经过测量可以说 BA+ACBC,可以说这两条路线的长是不一样的.2、有三根木棒长分别为3cm、6cm 和 2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形,关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个
5、三角形.错导:3cm+6cm2cm 用 3cm、6cm、2cm 的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里 3+62,没错,可 6-3 不小于 2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构 课后反思 课后训练 基础知识 一、选择题 1、下列图形中三角形的个数是()A、4 个 B、6 个 C、9 个 D、10 个 2、下列长度的三条线段,能组成三角形的是()A、1cm,2 cm,3cm B、2cm,3 cm,6 cm C、4cm,6 cm,8cm D、5cm,6 cm,1
6、2cm 3、已知三条线段的比是:1:3:4;1:4:6;3:3:6;6:6:10;3:4:5、其中可构成三角形的有()A.1 个 B.2 个 C.3 个 C.4 个 4、(2012浙江义乌)如果三角形的两边长分别为3 和 5,第三边长是偶数,则第三边长可以是【】A、2 B、3 C、4 D、8 5、(2012 广东汕头)已知三角形两边的长分别是4 和 10,则此三角形第三边的长可能是【】A、5 B.6 C、11 D.16 6、(2013宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A、1,2,6 B、2,2,4 C、1,2,3 D、2,3,4 7.已知等腰三角
7、形的周长为 24,一边长是 4,则另一边长是()A.16 B.10 C.10 或 16 D.无法确定 8.有四根长度分别为 6cm,5cm,4cm,1cm 的木棒,选择其中的三根组成三角形,则可选择的种数有()A.4 B.3 C.2 D.1 9、(2013南通)有 3cm,6cm,8cm,9cm 的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A、1 B、2 C、3 D、4 10、(2013海南)一个三角形的三条边长分别为 1、2、x,则 x 的取值范围是()A、1x3 B、1x3 C、1x3 D、1x3 11、如果三角形的两边长分别为 3 和 5,则周长 L 的取
8、值范围是()A.6L15 B.6L16 C.11L13 D.10L16 12、在下列长度的四根木棒中,能与 4cm、9cm 两根木棒围成一个三角形是()A、4cm B、5cm C、13cm D、9cm 13、已知等腰三角形的两边长分别为 4、9,则它的周长为()A、22 B、17 C、17 或 22 D、13 二、填空题 1、如图,图中有 个三角形,它们分别是 .2、若五条线段的长分别是 1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成_个三角形.3、ABC 的周长是 12 cm,边长分别为 a,b,c,且 a=b+1,b=c+1,则 a=cm,b=cm,c=cm.4、在AB
9、C 中,AB=5,AC=7,那么 BC 的长的取值范围是_.5、若等腰三角形的腰长为 6,则它的底边长 a 的取值范围是_;若等腰三角形的底边长为 4,则它的腰长 b 的取值范围是_.三、解答题 1、已知三角形三边的比是 3:4:5,且最大边长与最小边长的差是 4,求这个三角形的三边的长.2、已知等腰三角形两边长分别为 a 和 b,且满足a-1+(2a+3b-11)2=0,求这个等腰三角形的周长.GFEDCBA11.1.2 三角形的高、中线、与角平分线 学习目标:1、经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.2、会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三
10、条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.学习重点:1、了解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线.2、了解三角形的三条高、三条中线与三条角平分线分别交于一点.学习难点:1、三角形平分线与角平分线的区别,三角形的高与垂线的区别.2、钝角三角形高的画法.3、不同的三角形三条高的位置关系.课前预习 指导学生预习课本 P4-5 页面(课前完成)三角形的 重要线段 意义 图形 表示法 三角形 的高线 从 三 角 形的 一 个 顶点 向 它 的对 边 所 在的 直 线 作垂线,顶点和 垂 足 之间的线段 1、AD 是ABC 的BC 上的
11、高线.2、ADBC 于 D.3、ADB=ADC=90.三角形 的中线 三角形中,连 结 一 个顶 点 和 它对 边 中 点的 线段 1、AD 是ABC的BC上的中线.2、BD=DC=BC.三角形的 角平分线 三 角 形 一个 内 角 的平 分 线 与它 的 对 边相交,这个角 顶 点 与交 点 之 间的线段 1、AD是ABC的BAC的平分线.2、1=2=BAC.课内探究 探究一:(1)什么叫三角形的高?三角形的高与垂线有何区别和联系?(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?3、三角形的高、中线
12、和角平分线是代表线段还是代表射线或直线?【拓展延伸】1、如图所示,在ABC 中,已知点 D,E,F 分别为边BC,AD,CE 的中点,且 S ABC=4cm2,则 S 阴影等于()A.2cm2 B.1cm2 C.12cm2 D.14cm2 2、如图,SABC=1,且 D 是 BC 的中点,AE:EB=1:2,求ADE 的面积.EDCBA 3、如图,在ABC中,2,3ACcm BCcm,ABC的高AD与BE的比是多少?(友情提示:利用三角形的面积公式)FEDCBA 当堂检测 1、让学生在练习本上画出锐角、钝角、直角三角形,并在这个三角形中画出它的三条高.观察这三条高所在的直线的位置有何关系?2、
13、让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.(如果他们所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里)?观察这三条中线的位置有何关系?3、让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?课后反思 课后训练 一、选择题 1、三角形的角平分线、中线、高线都是()A.线段 B.射线 C.直线 D.以上都有可能 2、至少有两条高在三角形内部的三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 3、(2012 山东省德州市)不一定在三角形内部的线段是()(A)三角形的角平分线
14、(B)三角形的中线(C)三角形的高 (D)三角形的中位线 4、在ABC 中,D 是 BC 上的点,且 BD:CD=2:1,SACD=12,那么 SABC等于()A.30 B.36 C.72 D.24 5、小华在电话中问小明:“已知一个三角形三边长分别是 4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解”小华根据小明的提示作出的图形正确的是()A.B.C.D.6、可以把一个三角形分成面积相等的两部分的线段是()A、三角形的高 B、三角形的角平分线C、三角形的中线 D、无法确定 7、在三角形中,交点一定在三角形内部的有()三角形的三条高线 三角形的三条中线 三角形的
15、三条角平分线 三角形的外角平分线 A、B、C、D、8.如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是 ()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 9、下图中,正确画出ABC 的 AC 边上的高的是()A B C D 二、填空题 1、如图,在ABC 中,BC 边上的高是 ,在AEC 中,AE 边上的高是 ,EC 边上的高是 .EFDCBA2.,AD 是ABC 的边 BC 上的中线,已知 AB=5cm,AC=3cm,ABD与ACD的周长之差为 .三、解答题 1、如图,在ABC 中画出高线AD、中线BE、角平分线CF.2、在ABC 中,AB=AC,AD 是中线
16、,ABC 的周长为 34cm,ABD 的周长为 30cm,求 AD 的长.3.如图,已知:在三角形 ABC 中,C=90,CD 是斜边 AB 上的高,AB=5,BC=4,AC=3,求高CD的长度.4、用四种不同的方法将三角形面积四等分.ABC11.1.3 三角形的稳定性 学习目标:通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用 学习重点:了解三角形稳定性在生产、生活的实际应用。学习难点:准确使用三角形稳定性于生产生活之中 课前预习 预习课本 P6-7 内容,回答以下内容。盖房子时,在窗框未安好之前,木工师傅常常先在窗框上斜钉一根木条(如图)。
17、为什么要这样做呢?1、自学本课内容后,你有哪些疑难之处?2、你有哪些问题要提交小组讨论?学生展示预习所遇到问题。课内探究 1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?从上面实验过程你能得出什么结论?与同伴交流。【拓展延伸】1(2012茂名)如图所示,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的哪个性质?答:(填“稳定性”或“不稳定性”)2、在生活中,我们常常会看到如图所示的情况,在
18、电线杆上拉两根钢筋来加固电线杆,这样做的依据是 .3、空调安装在墙上时,一般都会象如图所示的方法固定在墙上,这种方法应用的数学知识是 .人站在晃动的公共汽车上若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了 .4、如图,是边长为25cm 的活动四边形衣帽架,它应用了四边形的 当堂检测 3、四边形没有稳定性,当四边形形状改变时,发生变化的是()A、四边形的边长 B、四边形的周长 C、四边形的某些角的大小 D、四边形的内角和 4、造房子时,屋顶常用三角形结构,从数学角度来看,是应用了_,而活动挂架则用了四边形的_ 课后训练 基础知识 一、选择题 1、如图,工人师傅砌门时,常用木条 EF
19、 固定矩形门框 ABCD,使其不变形,这种做法的根据是()A、两点之间线段最短 B、矩形的对称性 C、矩形的四个角都是直角 D、三角形的稳定性 2、王师傅用 4 根木条钉成一个四边形木架,如图要使这个木架不变形,他至少还要再钉上几根木条?()A、0 根 B、1 根 C、2 根 D、3 根 3、如图,一扇窗户打开后,用窗钩 AB 可将其固定,这里所运用的几何原理是()A、三角形的稳定性 B、两点之间线段最短 C、两点确定一条直线 D、垂线段最短 4、下列图形中具有稳定性的是()A、直角三角形 B、长方形 C、正方形 D、平行四边形 5、下列图中具有稳定性的是()A、B、C、D、6.如图小明做了一
20、个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、7.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A、3 根 B、4 根 C、5 根 D、6 根 6、下列图形中,不具有稳定性的是()A、B、C、D、7、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A、两点之间,线段最短 B、垂线段最短 C、三角形具有稳定性 D、两直线平行,内错角相等 8.不是利用三角形稳定性的是()A、自行车的三角形车架 B、三角形房架 C、照相机的三角架 D、矩形门框的斜拉条 8、用五根木棒钉成如下四个图形,具有稳定性的有()A、1
21、个 B、2个 C、3个 D、4个 9、如图所示,具有稳定性的有()A、只有(1),(2)B、只有(3),(4)C、只有(2),(3)D、(1),(2),(3)10、图中的五角星是用螺栓将两端打有孔的 5 根木条连接而构成的,它的形状不稳定如果用在图中木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,且所加螺栓尽可能少,那么需要添加螺栓()A、1 个 B、2 个 C、3 个 D、4 个 11.2 与三角形有关的角 11.2.1 三角形的内角 学习目标:1 经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理 2 能应用三角形内角和定理解决一些简单的实际问题 学习重点:三角
22、形内角和定理。学习难点:三角形内角和定理的推理的过程 课前预习 预习课本 P11-14 及课后练习(课前完成)三角的内角和多少?直角三角形两个锐和为多少?课内探究 让学生动手把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出的度数,可得到 2、剪下,按图(2)拼在一起,从而还可得到 3、把和剪下按图(3)拼在一起,用量角器量一量的度数,会得到什么结果。4、如果我们不用剪、拼的办法,可不可以用推理论证的方法来说明上面的结 论 的 正 确 性 呢?已 知,说 明,结合图(1)、图(2)、图(3)能不能用图(4)也可以说明这个结论成立。你还有几种 方法?【拓展延伸】1、如图,在ABC 中,1
23、=2,3=4,BOC=120,则A=.2、如图,AD、AE 分别是ABC 的高和角平分线,B=58,C=36,EAD=.3、如图所示,在ABC 中,B=C,FDBC,DEAB,AFD=150,则EDF=_度.4、如图,A+B+C+D+E+F=.当堂检测 1、ABC中,ABC、ACB的平分线相交于点 O。(1)若ABC=40,ACB=50,则 BOC=。FEDCBA(2)若ABC+ACB=116,则BOC=。(3)若A=76,则BOC=。(4)若BOC=120,则A=。(5)你能找出A 与BOC 之间的数量关系吗?2、如图,ABC 中,A=40,B=72,CE 平分ACB,CDAB 于 D,DF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版八 年级 上册 数学 导学案第 11 三角形 535

限制150内