2016年北京市高考数学试卷理科解析讲解(共20页).doc
《2016年北京市高考数学试卷理科解析讲解(共20页).doc》由会员分享,可在线阅读,更多相关《2016年北京市高考数学试卷理科解析讲解(共20页).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2016年北京市高考数学试卷(理科)一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1(5分)(2016北京)已知集合A=x|x|2,B=1,0,1,2,3,则AB=()A0,1B0,1,2C1,0,1D1,0,1,22(5分)(2016北京)若x,y满足,则2x+y的最大值为()A0B3C4D53(5分)(2016北京)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A1B2C3D44(5分)(2016北京)设,是向量,则“|=|”是“|+|=|”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也
2、不必要条件5(5分)(2016北京)已知x,yR,且xy0,则()A0Bsinxsiny0C()x()y0Dlnx+lny06(5分)(2016北京)某三棱锥的三视图如图所示,则该三棱锥的体积为()ABCD17(5分)(2016北京)将函数y=sin(2x)图象上的点P(,t)向左平移s(s0)个单位长度得到点P,若P位于函数y=sin2x的图象上,则()At=,s的最小值为Bt=,s的最小值为Ct=,s的最小值为Dt=,s的最小值为8(5分)(2016北京)袋中装有偶数个球,其中红球、黑球各占一半甲、乙、丙是三个空盒每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个
3、放入乙盒,否则就放入丙盒重复上述过程,直到袋中所有球都被放入盒中,则()A乙盒中黑球不多于丙盒中黑球B乙盒中红球与丙盒中黑球一样多C乙盒中红球不多于丙盒中红球D乙盒中黑球与丙盒中红球一样多二、填空题共6小题,每小题5分,共30分9(5分)(2016北京)设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=10(5分)(2016北京)在(12x)6的展开式中,x2的系数为(用数字作答)11(5分)(2016北京)在极坐标系中,直线cossin1=0与圆=2cos交于A,B两点,则|AB|=12(5分)(2016北京)已知an为等差数列,Sn为其前n项和若a1=6,a3+a5=0
4、,则S6=13(5分)(2016北京)双曲线=1(a0,b0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点若正方形OABC的边长为2,则a=14(5分)(2016北京)设函数f(x)=若a=0,则f(x)的最大值为;若f(x)无最大值,则实数a的取值范围是三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程15(13分)(2016北京)在ABC中,a2+c2=b2+ac()求B的大小;()求cosA+cosC的最大值16(13分)(2016北京)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如
5、表(单位:小时):A班6 6.5 7 7.5 8B班6 7 8 9 10 11 12C班3 4.5 6 7.5 9 10.5 12 13.5()试估计C班的学生人数;()从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;()再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为1,表格中数据的平均数记为0,试判断0和1的大小(结论不要求证明)17(14分)(2016北京)如图,在四棱锥PABCD中,平
6、面PAD平面ABCD,PAPD,PA=PD,ABAD,AB=1,AD=2,AC=CD=()求证:PD平面PAB;()求直线PB与平面PCD所成角的正弦值;()在棱PA上是否存在点M,使得BM平面PCD?若存在,求的值,若不存在,说明理由18(13分)(2016北京)设函数f(x)=xeax+bx,曲线y=f(x)在点(2,f(2)处的切线方程为y=(e1)x+4,()求a,b的值;()求f(x)的单调区间19(14分)(2016北京)已知椭圆C:+=1(a0,b0)的离心率为,A(a,0),B(0,b),O(0,0),OAB的面积为1()求椭圆C的方程;()设P是椭圆C上一点,直线PA与y轴交
7、于点M,直线PB与x轴交于点N求证:|AN|BM|为定值20(13分)(2016北京)设数列A:a1,a2,aN (N2)如果对小于n(2nN)的每个正整数k都有akan,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合()对数列A:2,2,1,1,3,写出G(A)的所有元素;()证明:若数列A中存在an使得ana1,则G(A);()证明:若数列A满足anan11(n=2,3,N),则G(A)的元素个数不小于aNa12016年北京市高考数学试卷(理科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1(5分)
8、(2016北京)已知集合A=x|x|2,B=1,0,1,2,3,则AB=()A0,1B0,1,2C1,0,1D1,0,1,2【考点】交集及其运算菁优网版权所有【专题】计算题;转化思想;综合法;集合【分析】先求出集合A和B,由此利用交集的定义能求出AB【解答】解:集合A=x|x|2=x|2x2,B=1,0,1,2,3,AB=1,0,1故选:C【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用2(5分)(2016北京)若x,y满足,则2x+y的最大值为()A0B3C4D5【考点】简单线性规划菁优网版权所有【专题】计算题;规律型;数形结合;函数思想;转化思想【分析】作出不
9、等式组对应的平面区域,目标函数的几何意义是直线的纵截距,利用数形结合即可求z的取值范围【解答】解:作出不等式组对应的平面区域如图:(阴影部分)设z=2x+y得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点A时,直线y=2x+z的截距最大,此时z最大由,解得,即A(1,2),代入目标函数z=2x+y得z=12+2=4即目标函数z=2x+y的最大值为4故选:C【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法3(5分)(2016北京)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A1B2C3D4【考点】程
10、序框图菁优网版权所有【专题】计算题;操作型;算法和程序框图【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案【解答】解:输入的a值为1,则b=1,第一次执行循环体后,a=,不满足退出循环的条件,k=1;第二次执行循环体后,a=2,不满足退出循环的条件,k=2;第三次执行循环体后,a=1,满足退出循环的条件,故输出的k值为2,故选:B【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答4(5分)(2016北京)设,是向量,则“|=|”是“|+|=|”的()A充分而不必要条件B必要而不充分条件C充分必
11、要条件D既不充分也不必要条件【考点】充要条件;向量的模菁优网版权所有【专题】转化思想;平面向量及应用;矩阵和变换【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案【解答】解:若“|=|”,则以,为邻边的平行四边形是菱形;若“|+|=|”,则以,为邻边的平行四边形是矩形;故“|=|”是“|+|=|”的既不充分也不必要条件;故选:D【点评】本题考查的知识点是充要条件,向量的模,分析出“|=|”与“|+|=|”表示的几何意义,是解答的关键5(5分)(2016北京)已知x,yR,且xy0,则()A0Bsinxsiny0C()x()y0Dlnx+lny0【考点】不等关系与不等式菁优网版权所有
12、【专题】转化思想;函数的性质及应用;不等式【分析】x,yR,且xy0,可得:,sinx与siny的大小关系不确定,lnx+lny与0的大小关系不确定,即可判断出结论【解答】解:x,yR,且xy0,则,sinx与siny的大小关系不确定,即0,lnx+lny与0的大小关系不确定故选:C【点评】本题考查了不等式的性质、函数的单调性,考查了推理能力与计算能力,属于中档题6(5分)(2016北京)某三棱锥的三视图如图所示,则该三棱锥的体积为()ABCD1【考点】由三视图求面积、体积菁优网版权所有【专题】计算题;空间位置关系与距离;立体几何【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱
13、锥,进而可得答案【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积S=11=,高为1,故棱锥的体积V=,故选:A【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键7(5分)(2016北京)将函数y=sin(2x)图象上的点P(,t)向左平移s(s0)个单位长度得到点P,若P位于函数y=sin2x的图象上,则()At=,s的最小值为Bt=,s的最小值为Ct=,s的最小值为Dt=,s的最小值为【考点】函数y=Asin(x+)的图象变换菁优网版权所有【专题】转化思想;转化法;三角函数的图像与性质【分析】将x=代入得:
14、t=,进而求出平移后P的坐标,进而得到s的最小值【解答】解:将x=代入得:t=sin=,将函数y=sin(2x)图象上的点P向左平移s个单位,得到P(s,)点,若P位于函数y=sin2x的图象上,则sin(2s)=cos2s=,则2s=+2k,kZ,则s=+k,kZ,由s0得:当k=0时,s的最小值为,故选:A【点评】本题考查的知识点是函数y=Asin(x+)(A0,0)的图象和性质,难度中档8(5分)(2016北京)袋中装有偶数个球,其中红球、黑球各占一半甲、乙、丙是三个空盒每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒重复上述过程,直到
15、袋中所有球都被放入盒中,则()A乙盒中黑球不多于丙盒中黑球B乙盒中红球与丙盒中黑球一样多C乙盒中红球不多于丙盒中红球D乙盒中黑球与丙盒中红球一样多【考点】进行简单的演绎推理菁优网版权所有【专题】推理和证明【分析】分析理解题意:乙中放红球,则甲中也肯定是放红球;往丙中放球的前提是放入甲中的不是红球,据此可以从乙中的红球个数为切入点进行分析【解答】解:取两个球共有4种情况:红+红,则乙盒中红球数加1个;黑+黑,则丙盒中黑球数加1个;红+黑(红球放入甲盒中),则乙盒中黑球数加1个;黑+红(黑球放入甲盒中),则丙盒中红球数加1个设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,
16、黑球y个,x+y=a则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球故选B【点评】该题考查了推理与证明,重点是找到切入点逐步进行分析,对学生的逻辑思维能力有一定要求,中档题二、填空题共6小题,每小题5分,共30分9(5分)(2016北京)设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=1【考点】复数的代数表示法及其几何意义菁优网版权所有【专题】计算题;转化思想;转化法;数系的扩充和复数【分析】(1+i)(a+i)
17、=a1+(a+1)i,则a+1=0,解得答案【解答】解:(1+i)(a+i)=a1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=1,故答案为:1【点评】本题考查的知识点是复数的代数表示法及其几何意义,难度不大,属于基础题10(5分)(2016北京)在(12x)6的展开式中,x2的系数为60(用数字作答)【考点】二项式定理的应用菁优网版权所有【专题】方程思想;转化思想;二项式定理【分析】利用二项式定理展开式的通项公式即可得出【解答】解:(12x)6的展开式中,通项公式Tr+1=(2x)r=(2)rxr,令r=2,则x2的系数=60故答案为:60【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 北京市 高考 数学试卷 理科 解析 讲解 20
限制150内