(本科)第7章假设检验ppt课件.pptx
《(本科)第7章假设检验ppt课件.pptx》由会员分享,可在线阅读,更多相关《(本科)第7章假设检验ppt课件.pptx(139页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第七七章章假设检验假设检验假设检验的基本原理假设检验的基本原理总体参数假设检验总体参数假设检验非参数检验非参数检验(本科)第7章假设检验ppt课件第一节第一节假设检验的基本原理假设检验的基本原理假设检验的基本原理假设检验的基本原理假设检验的规则与两类错误假设检验的规则与两类错误检验功效检验功效(本科)第7章假设检验ppt课件一、假设检验的基本原理一、假设检验的基本原理v假设检验是统计推断的另一项重要组成部分,是参数估假设检验是统计推断的另一项重要组成部分,是参数估计的延续,是对参数估计在统计上的验证与补充。它首计的延续,是对参数估计在统计上的验证与补充。它首先对考察总体的分布形式或总体的某些
2、未知参数事先做先对考察总体的分布形式或总体的某些未知参数事先做出某些假设,然后根据检验对象构造合适的检验统计量出某些假设,然后根据检验对象构造合适的检验统计量并经过数理统计分析,确定在假设下,该检验统计量的并经过数理统计分析,确定在假设下,该检验统计量的抽样分布;在给定的显著性水平下,从抽样分布中得出抽样分布;在给定的显著性水平下,从抽样分布中得出鉴别对原先假设的拒绝域和接受域的临界值;之后由所鉴别对原先假设的拒绝域和接受域的临界值;之后由所抽取的样本资料计算样本统计量,并将样本统计量与临抽取的样本资料计算样本统计量,并将样本统计量与临界统计量进行比较,从而对所提出的原假设做出统计判界统计量进
3、行比较,从而对所提出的原假设做出统计判断:是接受还是拒绝原假设。也就是从样本中所蕴含的断:是接受还是拒绝原假设。也就是从样本中所蕴含的信息来对总体情况进行判断。信息来对总体情况进行判断。(本科)第7章假设检验ppt课件v假设检验所遵循的推断依据是统计中的假设检验所遵循的推断依据是统计中的“小概小概率原理率原理”:小概率事件在一次试验中几乎是不:小概率事件在一次试验中几乎是不会发生的。举个例子来说,在会发生的。举个例子来说,在10000件的产品中,件的产品中,如果只有如果只有1件是次品,那么可以得知,在一次试件是次品,那么可以得知,在一次试验中随机抽取验中随机抽取1件产品,它为次品的概率就为件产
4、品,它为次品的概率就为0.01,此概率是非常小的。或者是说,在一次,此概率是非常小的。或者是说,在一次随机抽样试验中,次品几乎是不会被抽到的。随机抽样试验中,次品几乎是不会被抽到的。反过来,如果从这批产品中随机抽取反过来,如果从这批产品中随机抽取1件,恰好件,恰好是次品,那么,我们就有理由怀疑该批产品的是次品,那么,我们就有理由怀疑该批产品的次品率不是很小,否则就不会那么容易地抽到次品率不是很小,否则就不会那么容易地抽到次品。因此,有足够的理由否认该批产品的次次品。因此,有足够的理由否认该批产品的次品率很低的假设。品率很低的假设。(本科)第7章假设检验ppt课件v通常概率要多大才能算得上是小概
5、率呢?假设检验中把通常概率要多大才能算得上是小概率呢?假设检验中把这个小概率称为显著性水平这个小概率称为显著性水平,其取值的大小与我们能,其取值的大小与我们能否做出正确判断有着相当大的关系。然而,否做出正确判断有着相当大的关系。然而,的取值并的取值并没有固定的标准,只能根据实际需要来确定。一般地,没有固定的标准,只能根据实际需要来确定。一般地,取取0.05(5),对于一些比较严格的情况,例如在一),对于一些比较严格的情况,例如在一些高精密质量检验的假设检验中,它可以取些高精密质量检验的假设检验中,它可以取0.01或者更或者更小。小。越小,所做出的拒绝原假设的判断的说服力就越越小,所做出的拒绝原
6、假设的判断的说服力就越强。当然,不管强。当然,不管有多么地小,也不能代表小概率事件有多么地小,也不能代表小概率事件没有发生的可能,这也正是假设检验与数学上没有发生的可能,这也正是假设检验与数学上“反证法反证法”的不同之处。所以,对于拒绝或者接受,都只是统计的不同之处。所以,对于拒绝或者接受,都只是统计意义上的,并不是完全意义上的。这一点在学习假设检意义上的,并不是完全意义上的。这一点在学习假设检验过程中是容易被疏忽的。验过程中是容易被疏忽的。(本科)第7章假设检验ppt课件v事先建立假设,是假设检验中关键的一项工作。它包括事先建立假设,是假设检验中关键的一项工作。它包括原假设和备选假设两部分。
7、原假设是建立在假定原来总原假设和备选假设两部分。原假设是建立在假定原来总体没有发生变化的基础之上的,也就是总体参数没有显体没有发生变化的基础之上的,也就是总体参数没有显著变化。备选假设是原假设的对立,是在否认原假设之著变化。备选假设是原假设的对立,是在否认原假设之后所要接受的内容,通常这是我们真正感兴趣的一个判后所要接受的内容,通常这是我们真正感兴趣的一个判断。例如在上面的例子中,如果想确认次品率是否为断。例如在上面的例子中,如果想确认次品率是否为0.01,我们可以分别建立原假设和备选假设为:,我们可以分别建立原假设和备选假设为:H0:0=0.01%,H1:00.01%;如果我们想确认次品率是
8、;如果我们想确认次品率是否大于(小于)否大于(小于)0.01,那么对应的备选假设为:,那么对应的备选假设为:H1:00.01%(或或00.01%),原假设与前面相同。由此可,原假设与前面相同。由此可见,备选假设与原假设的建立不是随意的,而是要根据见,备选假设与原假设的建立不是随意的,而是要根据研究的需要来确定的。研究的需要来确定的。(本科)第7章假设检验ppt课件v应当指出,在假设检验中,相对而言,当原假应当指出,在假设检验中,相对而言,当原假设被拒绝时,我们能够以较大的把握肯定备选设被拒绝时,我们能够以较大的把握肯定备选假设的成立;而当原假设不能被拒绝时,我们假设的成立;而当原假设不能被拒绝
9、时,我们并不能断定原假设确实成立。例如,当给定的并不能断定原假设确实成立。例如,当给定的为为0.01时,如果检验统计量的取值落入其发生概时,如果检验统计量的取值落入其发生概率不超过率不超过0.04但又大于但又大于0.01的区域时,我们不能的区域时,我们不能拒绝原假设。但事实上,在原假设成立的前提拒绝原假设。但事实上,在原假设成立的前提下,其发生的概率最多只有下,其发生的概率最多只有0.04,因此难以断定,因此难以断定原假设成立。如果将显著水平定为原假设成立。如果将显著水平定为0.05,则原假则原假设就会被拒绝。设就会被拒绝。(本科)第7章假设检验ppt课件v假设检验按照所检验内容的不同,可以分
10、为参假设检验按照所检验内容的不同,可以分为参数检验和非参数检验。对已知总体分布的某个数检验和非参数检验。对已知总体分布的某个未知参数进行的检验,称为参数检验;对总体未知参数进行的检验,称为参数检验;对总体的分布形式进行的检验,则称为非参数检验。的分布形式进行的检验,则称为非参数检验。本章将分别对这两类检验进行介绍。本章将分别对这两类检验进行介绍。(本科)第7章假设检验ppt课件二、假设检验的规则与两类错误二、假设检验的规则与两类错误(一)假设检验的规则(一)假设检验的规则v综合上面假设检验的原理分析,给出假设检验的步骤:综合上面假设检验的原理分析,给出假设检验的步骤:1根据实际应用问题确定合适
11、的原假设根据实际应用问题确定合适的原假设H0和备选假设和备选假设H1;2确定检验统计量,通过数理统计分析确定该统计量的确定检验统计量,通过数理统计分析确定该统计量的抽样分布;抽样分布;3给定检验的显著性水平给定检验的显著性水平,在原假设成立的条件下,结,在原假设成立的条件下,结合备选假设的定义,由检验统计量的抽样分布情况求出合备选假设的定义,由检验统计量的抽样分布情况求出相应的临界值,该临界值为原假设的接受域与拒绝域的相应的临界值,该临界值为原假设的接受域与拒绝域的分界值;分界值;4从样本资料计算检验的样本统计量,并将其与临界值从样本资料计算检验的样本统计量,并将其与临界值进行比较,判断是否接
12、受或拒绝原假设。进行比较,判断是否接受或拒绝原假设。(本科)第7章假设检验ppt课件v上面步骤中,对检验统计量抽样分布的确认属于高深的上面步骤中,对检验统计量抽样分布的确认属于高深的概率数理统计的研究内容,本处我们不作探讨。概率数理统计的研究内容,本处我们不作探讨。v从检验程序我们可以看出,统计量的取值范围可以分为从检验程序我们可以看出,统计量的取值范围可以分为接受域和拒绝域两个区域。拒绝域正就是统计量取值的接受域和拒绝域两个区域。拒绝域正就是统计量取值的小概率区域。按照我们将这个拒绝域安排在所检验统计小概率区域。按照我们将这个拒绝域安排在所检验统计量的抽样分布的某一侧还是两端,可以将检验分为
13、单侧量的抽样分布的某一侧还是两端,可以将检验分为单侧检验和双侧检验。单侧检验中,又可以根据拒绝域,是检验和双侧检验。单侧检验中,又可以根据拒绝域,是在左侧还是在右侧而分为左侧检验和右侧检验。对于上在左侧还是在右侧而分为左侧检验和右侧检验。对于上述的情况,我们可以通过服从检验统计量的分布图来形述的情况,我们可以通过服从检验统计量的分布图来形象表示:象表示:(本科)第7章假设检验ppt课件图图7-1双侧检验与单侧检验双侧检验与单侧检验v图中的阴影部分为拒绝域,对应的分别是双侧、图中的阴影部分为拒绝域,对应的分别是双侧、左单侧、右单侧检验。左单侧、右单侧检验。(本科)第7章假设检验ppt课件v实际应
14、用中,是采用双侧检验还是单侧检验?单侧检验实际应用中,是采用双侧检验还是单侧检验?单侧检验中,是采用左单侧还是右单侧呢?例如,某公司采取了中,是采用左单侧还是右单侧呢?例如,某公司采取了新的销售方案,我们想检验新方案下销售收入是否与实新的销售方案,我们想检验新方案下销售收入是否与实施前的有差异,即是否等同于原来的销售收入水平,对施前的有差异,即是否等同于原来的销售收入水平,对该情况的检验就是双侧检验。如果我们想检验新方案下该情况的检验就是双侧检验。如果我们想检验新方案下的销售收入水平是否有所提高,此时检验就转化为单侧的销售收入水平是否有所提高,此时检验就转化为单侧检验了,而且是右侧检验。同理,
15、如果想检验收入水平检验了,而且是右侧检验。同理,如果想检验收入水平是否低于实施前的收入水平,就要采用单侧检验中的左是否低于实施前的收入水平,就要采用单侧检验中的左侧检验。也就是说,选用双侧、左侧或右侧检验时,要侧检验。也就是说,选用双侧、左侧或右侧检验时,要结合备选假设来考虑。又如,前面提到的次品率的例子结合备选假设来考虑。又如,前面提到的次品率的例子中,如果备选假设为中,如果备选假设为H1:00.01%,就是双侧检验;,就是双侧检验;如果备选假设为如果备选假设为H1:0)0.01%,就是属于左(右),就是属于左(右)单侧检验。单侧检验。(本科)第7章假设检验ppt课件v在检验规则中,我们经常
16、碰到两种重要的检验方法:在检验规则中,我们经常碰到两种重要的检验方法:z检验与检验与t检验。检验。1z检验。又称为正态分布检验,该检验认为所检验的统检验。又称为正态分布检验,该检验认为所检验的统计量服从正态分布。例如,从正态分布总体中抽取一个计量服从正态分布。例如,从正态分布总体中抽取一个样本,则样本均值样本,则样本均值服从正态分布服从正态分布;从一般;从一般非正态分布总体中抽样,当样本容量非正态分布总体中抽样,当样本容量n很大时,样本均很大时,样本均值值 近似地服从正态分布近似地服从正态分布,其中,其中,,为总体标准差。因为统计量为总体标准差。因为统计量 N(0,1),所以,我们可以利用标准
17、正态分布来进行检验。根据给所以,我们可以利用标准正态分布来进行检验。根据给定的显著性水平,从标准正态分布的临界表中查得临界定的显著性水平,从标准正态分布的临界表中查得临界值值,将,将z统计量的取值与临界值比较来判断统计量的取值与临界值比较来判断能否拒绝原假设。能否拒绝原假设。(本科)第7章假设检验ppt课件v2t检验。在检验中,当总体的标准差检验。在检验中,当总体的标准差未知未知时,需要用样本标准差时,需要用样本标准差来代替,从而来代替,从而构成统计量构成统计量。同样,从。同样,从t分布的分布的临界表中查得临界值临界表中查得临界值,并将样本统计量,并将样本统计量的的值与其比较做出判断。值与其比
18、较做出判断。(本科)第7章假设检验ppt课件(二)(二)p值检验值检验v在上面的检验步骤中,判断最后是接受原假设在上面的检验步骤中,判断最后是接受原假设还是拒绝原假设依据是,计算的样本统计量的还是拒绝原假设依据是,计算的样本统计量的数值与检验统计量的临界值的大小比较。此外,数值与检验统计量的临界值的大小比较。此外,我们也可以根据计算的概率值我们也可以根据计算的概率值p来判断能否拒绝来判断能否拒绝原假设,这就是原假设,这就是p值检验。现在在众多流行的统值检验。现在在众多流行的统计计量软件中(如计计量软件中(如SAS,SPSS,EXCEL等),等),最后的结果表中都给出了最后的结果表中都给出了p值
19、。值。(本科)第7章假设检验ppt课件vp值检验的原理:建立原假设后,在假定原假设成值检验的原理:建立原假设后,在假定原假设成立的情况下,参照备选假设,可以计算出检验统立的情况下,参照备选假设,可以计算出检验统计量超过或者小于(还要依照分布的不同、单侧计量超过或者小于(还要依照分布的不同、单侧检验、双侧检验的差异而定)由样本所计算出的检验、双侧检验的差异而定)由样本所计算出的检验统计量的数值的概率,这便是检验统计量的数值的概率,这便是p值;而后将此值;而后将此p值与事先给出的显著性水平值与事先给出的显著性水平进行比较,如果进行比较,如果p值小于值小于,也就是说,原假设对应的为小概率事件,也就是
20、说,原假设对应的为小概率事件,根据上述的根据上述的“小概率原理小概率原理”,我们就可以否定原,我们就可以否定原假设,而接受对应的备选假设。如果假设,而接受对应的备选假设。如果p值大于值大于,我们不就能否定原假设。,我们不就能否定原假设。(本科)第7章假设检验ppt课件v例如,对应上面的例如,对应上面的检验中,如果是双侧检验,检验中,如果是双侧检验,根据上面的说明,可以计算根据上面的说明,可以计算,若若p,那么我们就可以否认原假设,反之不,那么我们就可以否认原假设,反之不能否定原假设。能否定原假设。p值检验与前面介绍的方法得值检验与前面介绍的方法得出的结论是一致的。出的结论是一致的。(本科)第7
21、章假设检验ppt课件(三)两类错误(三)两类错误v在假设检验中,对假设的检验判断是依据样本实际资料在假设检验中,对假设的检验判断是依据样本实际资料所计算的统计量的值与临界值的比较来做出的。由于样所计算的统计量的值与临界值的比较来做出的。由于样本的随机性、样本信息的分散性等原因,这种合理的本的随机性、样本信息的分散性等原因,这种合理的“以偏概全以偏概全”式的假设检验,总是无法让我们百分百的肯式的假设检验,总是无法让我们百分百的肯定所做出结论的正确性。也就是说,我们有可能会做出定所做出结论的正确性。也就是说,我们有可能会做出错误的判断,这种风险是客观存在的。错误的判断,这种风险是客观存在的。v例如
22、,实际上依据真实总体情况,我们应该接受原假设例如,实际上依据真实总体情况,我们应该接受原假设H0,但根据样本信息,却做出拒绝,但根据样本信息,却做出拒绝H0的错误结论,称的错误结论,称这种错误为这种错误为“弃真弃真”错误;此外,我们也可能犯这样的错误;此外,我们也可能犯这样的错误:实际的总体情况是应该拒绝原假设,而我们却接错误:实际的总体情况是应该拒绝原假设,而我们却接受了它,称此为受了它,称此为“纳伪纳伪”错误。错误。(本科)第7章假设检验ppt课件v对于上述的两类错误,我们都希望能尽量减少其发生的对于上述的两类错误,我们都希望能尽量减少其发生的概率。因此需要对它们的概率进行简要分析。在假设
23、中,概率。因此需要对它们的概率进行简要分析。在假设中,我们给出了显著性水平我们给出了显著性水平(概率值),在(概率值),在“小概率事件小概率事件是几乎不会发生的是几乎不会发生的”原理上,如果样本资料的信息与总原理上,如果样本资料的信息与总体信息之间的差异出现的概率小于等于体信息之间的差异出现的概率小于等于,那么可以认,那么可以认为在一次试验中该事件不会发生(发生的可能性为在一次试验中该事件不会发生(发生的可能性很小)很小),从而我们就拒绝了原假设。这就是说,有,从而我们就拒绝了原假设。这就是说,有的可能性的可能性发生原假设是真实的却被拒绝的情况。所以显著性水平发生原假设是真实的却被拒绝的情况。
24、所以显著性水平就是我们犯就是我们犯“弃真弃真”错误的可能性大小。错误的可能性大小。越小,则越小,则犯犯“弃真弃真”错误的可能性就越小。因而,可以根据实际错误的可能性就越小。因而,可以根据实际需要对显著性水平需要对显著性水平加以控制,一般取加以控制,一般取=0.05(或者(或者=0.1),这就保证犯),这就保证犯“弃真弃真”错误的可能性不超过错误的可能性不超过5(或者(或者1)。如果要求更加严格,)。如果要求更加严格,可取更小的数值。可取更小的数值。(本科)第7章假设检验ppt课件v通常记通常记为犯为犯“纳伪纳伪”错误的可能性大小。由于错误的可能性大小。由于两类错误是一对矛盾,在其他条件不变的情
25、况两类错误是一对矛盾,在其他条件不变的情况下,减少犯下,减少犯“弃真弃真”错误的可能性(错误的可能性(),势),势必增大犯必增大犯“纳伪纳伪”错误的可能性(错误的可能性(),也就),也就是说,是说,的大小和显著性水平的大小和显著性水平的大小成相反方的大小成相反方向变化。向变化。(本科)第7章假设检验ppt课件v两类错误发生的概率两类错误发生的概率的相对关系可由下面的图形来表示:的相对关系可由下面的图形来表示:图图7-2两类错误两类错误v从图从图7-2中,我们也可以看出,当真实分布与待判别分中,我们也可以看出,当真实分布与待判别分布越远离时,在布越远离时,在一定下,一定下,将越小;也就是说,当差
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科 假设检验 ppt 课件
限制150内