2022小学数学概念教学_小学数学概念及其教学.docx
《2022小学数学概念教学_小学数学概念及其教学.docx》由会员分享,可在线阅读,更多相关《2022小学数学概念教学_小学数学概念及其教学.docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022小学数学概念教学_小学数学概念及其教学 小学数学概念教学由我整理,希望给你工作、学习、生活带来便利,猜你可能喜爱“小学数学概念及其教学”。 小学数学概念教学 陈官屯小学 韩美霞 一、什么是数学概念 数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中中的反映。数学的探讨对象是客观事物的数量关系和空间形式。在数学中,客观事物的颜色、材料、气味等方面的属性都被看作非本质属性而被舍弃,只保留它们在形态、大小、位置及数量关系等方面的共同属性。在数学科学中,数学概念的含义都要给出精确的规定,因而数学概念比一般概念更精确。 小学数学中有许多概念,包括:数的概念、运算的概念、量与计量的概念、几
2、何形体的概念、比和比例的概念、方程的概念,以及统计初步学问的有关概念等。这些概念是构成小学数学基础学问的重要内容,它们是相互联系着的。如只有明确坚固地驾驭数的概念,才能理解运算概念,而运算概念的驾驭,又能促进数的整除性概念的形成。 二、小学数学概念的表现形式 在小学数学教材中的概念,依据小学生的接受实力,表现形式各不相同,其中描述式和定义式是最主要的两种表示方式。 1定义式 定义式是用简明而完整的语言揭示概念的内涵或外延的方法,详细的做法是用原有的概念说明要定义的新概念。这些定义式的概念抓住了一类事物的本质特征,揭示的是一类事物的本质属性。这样的概念,是在对大量的探究材料的分析、综合、比较、分
3、类中,使之从直观到表象、继而上升为理性的相识。如“有两条边相等的三角形叫等腰三角形”;“含有未知数的等式叫方程”等等。这样定义的概念,条件和结论非常明显,便于学生一下子抓住数学概念的本质。 2描述式 用一些生动、详细的语言对概念进行描述,叫做描述式。这种方法与定义式不同,描述式概念,一般借助于学生通过感知所建立的表象,选取有代表性的特例做参照物而建立。如:“我们在数物体的时候,用来表示物体个数的 1、 2、 3、 4、5叫自然数”;“象1. 25、0.7 26、0.005等都是小数”等。这样的概念将随着儿童学问的增多和相识的深化而日趋完善,在小学数学教材中一般用于以下两种状况。 一种是对数学中
4、的点、线、体、集合等原始概念都用描述法加以说明。例如,“直线”这一概念,教材是这样描述的:拿一条直线,把它拉紧,就成了一条直线。“平面”就用“课桌面”、“黑板面”、“湖面”来说明。 另一种是对于一些较难理解的概念,假如用简练、概括的定义出现不易被小学生理解,就改用描述式。例如,对直圆柱和直圆锥的相识,由于小学生还缺乏运动的观点,不能像中学生那样用旋转体来定义,因此只能通过实物形象地描述了它们的特征,并没有以定义的形式揭示它们的本质属性。学生在视察、摆拼中,相识到圆柱体的特征是上下两个底面是相等的圆,侧面绽开的形态是长方形。 一般来说,在数学教材中,小学低年级的概念采纳描述式较多,随着小学生思维
5、实力的逐步发展,中年级逐步采纳定义式,不过有些定义只是初步的,是有待发展的。在整个小学阶段,由于数学概念的抽象性与学生思维的形象性的冲突,大部分概念没有下严格的定义;而是从学生所了解的实际事例或已有的学问阅历动身,尽可能通过直观的详细形象,帮助学生相识概念的本质属性。对于不简单理解的概念就暂不给出定义或者采纳分阶段逐步渗透的方法来解决。因此,小学数学概念呈现出两大特点:一是数学概念的直观性;二是数学概念的阶段性。在进行数学概念教学时,我们必需留意充分领悟教材的这两个特点。 三、小学数学概念教学的意义 首先,数学概念是数学基础学问的重要组成部分。 小学数学的基础学问包括:概念、定律、性质、法则、
6、公式等,其中数学概念不仅是数学基础学问的重要组成部分,而且是学习其他数学学问的基础。学生驾驭基础学问的过程,事实上就是驾驭概念并运用概念进行推断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。事实证明,假如学生有了正确、清楚、完整的数学概念,就有助于驾驭基础学问,提高运算和解题技能。相反,假如一个学生概念不清,就无法驾驭定律、法则和公式。例如,整数百以内的笔算加法法则为:“相同数位对齐,从个位加起,个位满十,就向十位进一。”要使学生理解驾驭这个法则,必需事先使他们弄清“数位”、“个位”、“十位”、“个位满十”等的意义,假如对这些概念理解不清,就无法学习这一法则。又如,圆的面积公式S=
7、r2,要以“圆”、“半径”、“平方”、“圆周率”等概念为基础。总之小学数学中的一些概念对于今后的学习而言,都是一些基本的、基础的学问。小学数学是一门概念性很强的学科,也就是说,任何一部分内容的教学,都离不开概念教学。 其次,数学概念是发展思维、培育数学实力的基础。 概念是思维形式之一,也是推断和推理的起点,所以概念教学对培育学生的思维实力能起重要作用。没有正确的概念,就不行能有正确的推断和推理,更谈不上逻辑思维实力的培育。例如,“含有未知数的等式叫做方程”,这是一个推断。在这个推断中,学生必需对“未知数”、“等式”这几个概念非常清晰,才能形成这个推断,并以此来推断出下面的6道题目,哪些是方程。
8、 (1)56+2379 (2)23-x67 (3)x54.5 (4)44288 (5)75x4 (6)9+x123 在概念教学过程中,为了使学生顺当地获得有关概念,经常要供应丰富的感性材料让学生视察,在视察的基础上通过老师的启发引导,对感性材料进行比较、分析、综合,最终再抽象概括出概念的本质属性。通过一系列的推断、推理使概念得到巩固和运用。从而使学生的初步逻辑思维实力逐步得到提高。 三、数学概念教学的一般要求 1使学生精确理解概念 理解概念,一要能举出概念所反映的现实原型,二要明确概念的内涵与外延,即明确概念所反映的一类事物的共同本质属性,和概念所反映的全体对象,三要驾驭表示概念的词语或符号。
9、 2使学生坚固驾驭概念 驾驭概念是指要在理解概念的基础上记住概念,正确区分概念的确定例证和否定例证。能对概念进行分类,形成肯定的概念系统。 3使学生能正确运用概念 概念的运用主要表现在学生能在不同的详细状况下,分辨出概念的本质属性,运用概念的有关属性进行推断推理。 四、小学数学概念教学的过程与方法 依据数学概念学习的心理过程及特征,数学概念的教学一般也分为三个阶段:引入概念,使学生感知概念,形成表象;通过分析、抽象和概括,使学生理解和明确概念;通过例题、习题使学生巩固和应用概念。 (一)数学概念的引入 数学概念的引入,是数学概念教学的第一个环节,也是非常重要的环节。概念引入得当,就可以紧紧地围
10、绕课题,充分地激发起学生的爱好和学习动机,为学生顺当地驾驭概念起到奠基作用。 引出新概念的过程,是揭示概念的发生和形成过程,而各个数学概念的发生形成过程又不尽相同,有的是现实模型的干脆反映;有的是在已有概念的基础上经过一次或多次抽象后得到的;有的是从数学理论发展的须要中产生的;有的是为解决实际问题的须要而产生的;有的是将思维对象志向化,经过推理而得;有的则是从理论上的存在性或从数学对象的结构中构造产生的。因此,教学中必需依据各种概念的产生背景,结合学生的详细状况,适当地选取不同的方式去引入概念。一般来说,数学概念的引入可以采纳如下几种方法。 1、以感性材料为基础引入新概念。 用学生在日常生活中
11、所接触到的事物或教材中的实际问题以及模型、图形、图表等作为感性材料,引导学生通过视察、分析、比较、归纳和概括去获得概念。 例如,要学习“平行线”的概念,可以让学生分辨一些熟识的实例,像铁轨、门框的上下两条边、黑板的上下边缘等,然后分化出各例的属性,从中找出共同的本质属性。铁轨有属性:是铁制的、可以看成是两条直线、在同一个平面内、两条边可以无限延长、永不相交等。同样可分析出门框和黑板上下边的属性。通过比较可以发觉,它们的共同属性是:可以抽象地看成两条直线;两条直线在同一平面内;彼此间距离到处相等;两条直线没有公共点等,最终抽象出本质属性,得到平行线的定义。 以感性材料为基础引入新概念,是用概念形
12、成的方式去进行教学的,因此教学中应选择那些能充分显示被引入概念的特征性质的事例,正确引导学生去进行视察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。 2、以新、旧概念之间的关系引入新概念。 假如新、旧概念之间存在某种关系,如相容关系、不相容关系等,那么新概念的引入就可以充分地利用这种关系去进行。 例如,学习“乘法意义”时,可以从“加法意义”来引入。又如,学习“整除”概念时,可以从“除法”中的“除尽”来引入。又如,学习“质因数”可以从“因数”和“质数”这两个概念引入。再如,在学习质数、合数概念时,可用约数概念引入:“请同学们写出数1,2,6,7,8,12,11,15的全部约
13、数。它们各有几个约数?你能给出一个分类标准,把这些数进行分类吗?你能找出多种分类方法吗?你找出的全部分类方法中,哪一种分类方法是最新的分类方法?” 3、以“问题”的形式引入新概念。 以“问题”的形式引入新概念,这也是概念教学中常用的方法。一般来说,用“问题”引入概念的途径有两条:从现实生活中的问题引入数学概念;从数学问题或理论本身的发展须要引入概念。 4、从概念的发生过程引入新概念。 数学中有些概念是用发生式定义的,在进行这类概念的教学时,可以采纳演示活动的直观教具或演示画图说明的方法去揭示事物的发生过程。例如,小数、分数等概念都可以这样引入。这种方法生动直观,体现了运动改变的观点和思想,同时
14、,引入的过程又自然地、无可辩驳地阐明白这一概念的客观存在性。 (二)数学概念的形成 引入概念,仅是概念教学的第一步,要使学生获得概念,还必需引导学生精确地理解概念,明确概念的内涵与外延,正确表述概念的本质属性。为此,教学中可采纳一些具有针对性的方法。 1、对比与类比。 对比概念,可以找出概念间的差异,类比概念,可以发觉概念间的相同或相像之处。例如,学习“整除”概念时,可以与“除法”中的“除尽”概念进行对比,去比较发觉两者的不同点。用对比或类比讲解并描述新概念,肯定要突出新、旧概念的差异,明确新概念的内涵,防止旧概念对学习新概念产生的负迁移作用的影响。 2、恰当运用反例。 概念教学中,除了从正面
15、去揭示概念的内涵外,还应考虑运用适当的反例去突出概念的本质属性,尤其是让学生通过对比正例与反例的差异,对自己出现的错误进行反思,更利于强化学生对概念本质属性的理解。 用反例去突出概念的本质属性,实质是使学生明确概念的外延从而加深对概念内涵的理解。凡具有概念所反映的本质属性的对象必属于该概念的外延集,而反例的构造,就是让学生找出不属于概念外延集的对象,明显,这是概念教学中的一种重要手段。但必需留意,所选的反例应当恰当,防止过难、过偏,造成学生的留意力分散,而达不到突出概念本质属性的目的。 3、合理运用变式。 依靠感性材料理解概念,往往由于供应的感性材料具有片面性、局限性,或者感性材料的非本质属性
16、具有较明显的突出特征,简单形成干扰的信息,而减弱学生对概念本质属性的正确理解。因此,在教学中应留意运用变式,从不同角度、不同方面去反映和刻画概念的本质属性。一般来说,变式包括图形变式、式子变式和字母变式等。 例如,讲授“等腰三角形”概念,老师除了用常见的图形展示外,还应采纳变式图形去强化这一概念,因为利用等腰三角形的性质去解题时,所遇见的图形往往是后面几种情形。 (三)数学概念的巩固 为了使学生坚固地驾驭所学的概念,还必需有概念的巩固和应用过程。教学中应留意如下几个方面。 1、留意刚好复习 概念的巩固是在对概念的理解和应用中去完成和实现的,同时还必需刚好复习,巩固离不开必要的复习。复习的方式可
17、以是对个别概念进行复述,也可以通过解决问题去复习概念,而更多地则是在概念体系中去复习概念。当概念教学到肯定阶段时,特殊是在章节末复习、期末复习和毕业总复习时,要重视对所学概念的整理和系统化,从纵向和横向找出各概念之间的关系,形成概念体系。 2、重视应用 在概念教学中,既要引导学生由详细到抽象,形成概念,又要让学生由抽象到详细,运用概念,学生是否坚固地驾驭了某个概念,不仅在于能否说出这个概念的名称和背诵概念的定义,而且还在于能否正确敏捷地应用,通过应用可以加深理解,增加记忆,提高数学的应用意识。 概念的应用可以从概念的内涵和外延两方面进行。 (1)概念内涵的应用 复述概念的定义或依据定义填空。
18、依据定义推断是非或改错。 依据定义推理。 依据定义计算。 例4(1是互质数。 (2)推断题: 27和20是互质数( ) 34与85是互质数( ) 有公约数1的两个数是互质数( ) 两个合数肯定不是互质数( ) ( 3)钝角三角形的一个角是 82o,另两个角的度数是互质数,这两个角可能是多少度? (4)假如P是质数,那么比P小的自然数都与P互质。这句话对吗?请说明理由? 2概念外延的应用 (1)举例 (2)分辨确定例证或否定例证。并说明理由。 (3)按指定的条件从概念的外延中选择事例。 (4)将概念按不同标准分类。 例5(1)列举你所见到过的圆柱形物体。 (2)下列图形中的阴影部分,哪些是扇形?
19、(图62) (3)分母是9的最简真分数有分子是9的假分数中,最小的一个是 (4)将自然数219按不同标准分成两类(至少提出3种不同的分法) 概念的应用可分为简洁应用和综合应用,在初步形成某一新概念后通过简洁应用可以促进对新概念的理解,综合应用一般在学习了一系列概念后,把这些概念结合起来加以应用,这种练习可以培育学生综合运用学问的实力。 五、小学数学概念教学中应留意的问题 1、把握概念教学的目标,处理好概念教学的发展性与阶段性之间的冲突。 概念本身有自己严密的逻辑体系。在肯定条件下,一个概念的内涵和外延是固定不变的,这是概念的确定性。由于客观事物的不断发展和改变,同时也由于人们相识的不断深化,因
20、此,作为人们反映客观事物本质属性的概念,也是在不断发展和改变的。但是,在小学阶段的概念教学,考虑到小学生的接受实力,往往是分阶段进行的。如对“数”这个概念来说,在不同的阶段有不同的要求。起先只是相识 1、 2、 3、,以后渐渐相识了零,随着学生年龄的增大,又引进了分数(小数),以后又渐渐引进正、负数,有理数和无理数,把数扩充到实数、复数的范围等。又如,对“0”的相识,起先时只知道它表示没有,然后知道又可以 表示该数位上一个单位也没有,还知道“0”可以表示界限等。 因此,数学概念的系统性和发展性与概念教学的阶段性成了教学中须要解决的一对冲突。解决这一冲突的关键是要切实把握概念教学的阶段性目标。
21、为了加强概念教学,老师必需仔细钻研教材,驾驭小学数学概念的系统,摸清概念发展的脉络。概念是逐步发展的,而且诸概念之间是相互联系的。不同的概念详细要求会有所不同,即使同一概念在不同的学习阶段要求也有差别。 有很多概念的含义是逐步发展的,一般先用描述方法给出,以后再下定义。例如,对分数意义理解的三次飞跃。第一次是在学习小数以前,就让学生初步相识了分数,“像上面讲的、等,都是分数。”通过大量感性直观的相识,结合详细事物描述什么样的是分数,初步理解分数是平均分得到的,理解谁是谁的几分之几。其次次飞跃是由详细到抽象,把单位“1”平均分成若干份,表示其中的一份或几份都可以用分数来表示。从详细事物中抽象出来
22、。然后概括分数的定义,这只是描述性地给出了分数的概念。这是感性的飞跃。第三次飞跃是对单位“1”的理解与扩展,单位“1”不仅可以表示一个物体、一个图形、一个计量单位,还可以是一个群体等,最终抽象出,分谁,谁就是单位“1”,这样单位“1”与自然数“1”的区分就更加明确了。这样三个层次不是一蹴而就的,要呈现学问的发展过程,引导学生在学问的发生发展过程中去理解分数。 再如长方体和立方体的相识在很多教材中是分成两个阶段进行教学的。在低年级,先出现长方体和立方体的初步相识,通过让学生视察一些实物及实物图,如装墨水瓶的纸盒、魔方等。积累一些有关长方体和立方体的感性相识,知道它们各是什么形态,知道这些形态的名
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 小学 数学 概念 教学 及其
限制150内