2014年辽宁省高考数学试卷(理科).doc
《2014年辽宁省高考数学试卷(理科).doc》由会员分享,可在线阅读,更多相关《2014年辽宁省高考数学试卷(理科).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 1 页(共 29 页)2014 年辽宁省高考数学试卷(理科)年辽宁省高考数学试卷(理科)一、选择题:本大题共一、选择题:本大题共 12 小题,每小题小题,每小题 5 分,在每小题给出的四个选项中,只分,在每小题给出的四个选项中,只有一项是符合题目要求的有一项是符合题目要求的1 (5 分)已知全集 U=R,A=x|x0,B=x|x1,则集合U(AB)=( )Ax|x0Bx|x1Cx|0x1Dx|0x12 (5 分)设复数 z 满足(z2i) (2i)=5,则 z=( )A2+3iB23i C3+2i D32i3 (5 分)已知 a=,b=log2,c=log,则( )Aabc Bacb Cc
2、ab Dcba4 (5 分)已知 m,n 表示两条不同直线, 表示平面,下列说法正确的是( )A若 m,n,则 mnB若 m,n,则 mnC若 m,mn,则 nD若 m,mn,则 n5 (5 分)设 , , 是非零向量,已知命题 p:若 =0, =0,则 =0;命题 q:若 , ,则 ,则下列命题中真命题是( )ApqBpqC (p)(q)Dp(q)6 (5 分)6 把椅子排成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A144 B120 C72D247 (5 分)某几何体三视图如图所示,则该几何体的体积为( )第 2 页(共 29 页)A82B8 C8D88 (5 分)设等差数列a
3、n的公差为 d,若数列为递减数列,则( )Ad0Bd0Ca1d0Da1d09 (5 分)将函数的图象向右平移个单位长度,所得图象对应的函数( )A在区间,上单调递增B在区间,上单调递减C在区间,上单调递减D在区间,上单调递增10 (5 分)已知点 A(2,3)在抛物线 C:y2=2px 的准线上,过点 A 的直线与C 在第一象限相切于点 B,记 C 的焦点为 F,则直线 BF 的斜率为( )ABCD11 (5 分)当 x2,1时,不等式 ax3x2+4x+30 恒成立,则实数 a 的取值范围是( )A5,3 B6,C6,2 D4,312 (5 分)已知定义在0,1上的函数 f(x)满足:f(0
4、)=f(1)=0;对所有 x,y0,1,且 xy,有|f(x)f(y)|xy|第 3 页(共 29 页)若对所有 x,y0,1,|f(x)f(y)|m 恒成立,则 m 的最小值为( )ABCD二、填空题:本大题共二、填空题:本大题共 4 小题,每小题小题,每小题 5 分。考生根据要求作答分。考生根据要求作答13 (5 分)执行如图的程序框图,若输入 x=9,则输出 y= 14 (5 分)正方形的四个顶点 A(1,1) ,B(1,1) ,C(1,1) ,D(1,1)分别在抛物线 y=x2和 y=x2上,如图所示,若将一个质点随机投入正方形 ABCD中,则质点落在图中阴影区域的概率是 15 (5
5、分)已知椭圆 C:+=1,点 M 与 C 的焦点不重合,若 M 关于 C 的焦点的对称点分别为 A、B,线段 MN 的中点在 C 上,则|AN|+|BN|= 16 (5 分)对于 c0,当非零实数 a,b 满足 4a22ab+4b2c=0 且使|2a+b|最大第 4 页(共 29 页)时,+的最小值为 三、解答题:解答应写出文字说明,证明过程或演算步骤三、解答题:解答应写出文字说明,证明过程或演算步骤17 (12 分)在ABC 中,内角 A、B、C 的对边分别为 a,b,c,且 ac,已知=2,cosB=,b=3,求:()a 和 c 的值;()cos(BC)的值18 (12 分)一家面包房根据
6、以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立()求在未来连续 3 天里,有连续 2 天的日销售量都不低于 100 个且另 1 天的日销售量低于 50 个的概率;()用 X 表示在未来 3 天里日销售量不低于 100 个的天数,求随机变量 X 的分布列,期望 E(X)及方差 D(X) 19 (12 分)如图,ABC 和BCD 所在平面互相垂直,且AB=BC=BD=2ABC=DBC=120,E、F 分别为 AC、DC 的中点()求证:EFBC;()求二面角 EBFC 的正弦值第 5 页(共 29 页)20 (12 分)
7、圆 x2+y2=4 的切线与 x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为 P(如图) ,双曲线 C1:=1 过点 P 且离心率为()求 C1的方程;()若椭圆 C2过点 P 且与 C1有相同的焦点,直线 l 过 C2的右焦点且与 C2交于 A,B 两点,若以线段 AB 为直径的圆过点 P,求 l 的方程21 (12 分)已知函数f(x)=(cosxx) (+2x)(sinx+1)g(x)=3(x)cosx4(1+sinx)ln(3)证明:()存在唯一 x0(0,) ,使 f(x0)=0;()存在唯一 x1(,) ,使 g(x1)=0,且对()中的 x0,有x0+x1
8、四、请考生在第四、请考生在第 22、23、24 三题中任选一题作答,如果多做,则按所做的第一三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用题记分,作答时用 2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑选铅笔在答题卡上把所选题目对应题号下方的方框涂黑选修修 4-1:几何证明选讲:几何证明选讲.22 (10 分)如图,EP 交圆于 E,C 两点,PD 切圆于 D,G 为 CE 上一点且PG=PD,连接 DG 并延长交圆于点 A,作弦 AB 垂直 EP,垂足为 F()求证:AB 为圆的直径;()若 AC=BD,求证:AB=ED第 6 页(共 29 页)选修选修 4-4:坐标系与
9、参数方程:坐标系与参数方程23将圆 x2+y2=1 上每一点的横坐标保持不变,纵坐标变为原来的 2 倍,得曲线C()写出 C 的参数方程;()设直线 l:2x+y2=0 与 C 的交点为 P1,P2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段 P1P2的中点且与 l 垂直的直线的极坐标方程不等式选讲不等式选讲24设函数 f(x)=2|x1|+x1,g(x)=16x28x+1记 f(x)1 的解集为M,g(x)4 的解集为 N()求 M;()当 xMN 时,证明:x2f(x)+xf(x)2第 7 页(共 29 页)2014 年辽宁省高考数学试卷(理科)年辽宁省高考数学试卷(理科)
10、参考答案与试题解析参考答案与试题解析一、选择题:本大题共一、选择题:本大题共 12 小题,每小题小题,每小题 5 分,在每小题给出的四个选项中,只分,在每小题给出的四个选项中,只有一项是符合题目要求的有一项是符合题目要求的1 (5 分)已知全集 U=R,A=x|x0,B=x|x1,则集合U(AB)=( )Ax|x0Bx|x1Cx|0x1Dx|0x1【分析】先求 AB,再根据补集的定义求 CU(AB) 【解答】解:AB=x|x1 或 x0,CU(AB)=x|0x1,故选:D【点评】本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法2 (5 分)设复数 z 满足(z2i)
11、(2i)=5,则 z=( )A2+3iB23i C3+2i D32i【分析】把给出的等式两边同时乘以,然后利用复数代数形式的除法运算化简,则 z 可求【解答】解:由(z2i) (2i)=5,得:,z=2+3i故选:A【点评】本题考查了复数代数形式的除法运算,是基础的计算题3 (5 分)已知 a=,b=log2,c=log,则( )第 8 页(共 29 页)Aabc Bacb Ccab Dcba【分析】利用指数式的运算性质得到 0a1,由对数的运算性质得到b0,c1,则答案可求【解答】解:0a=20=1,b=log2log21=0,c=log=log23log22=1,cab故选:C【点评】本题
12、考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于 0、1 这样的特殊值能起到事半功倍的效果,是基础题4 (5 分)已知 m,n 表示两条不同直线, 表示平面,下列说法正确的是( )A若 m,n,则 mnB若 m,n,则 mnC若 m,mn,则 nD若 m,mn,则 n【分析】A运用线面平行的性质,结合线线的位置关系,即可判断;B运用线面垂直的性质,即可判断;C运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D运用线面平行的性质和线面垂直的判定,即可判断【解答】解:A若 m,n,则 m,n 相交或平行或异面,故 A 错;B若 m,n,则 mn,故 B 正确;
13、C若 m,mn,则 n 或 n,故 C 错;D若 m,mn,则 n 或 n 或 n,故 D 错故选:B【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型第 9 页(共 29 页)5 (5 分)设 , , 是非零向量,已知命题 p:若 =0, =0,则 =0;命题 q:若 , ,则 ,则下列命题中真命题是( )ApqBpqC (p)(q)Dp(q)【分析】根据向量的有关概念和性质分别判断 p,q 的真假,利用复合命题之间的关系即可得到结论【解答】解:若 =0, =0,则 = ,即( ) =0,则 =0 不
14、一定成立,故命题 p 为假命题,若 , ,则 平行,故命题 q 为真命题,则 pq,为真命题,pq, (p)(q) ,p(q)都为假命题,故选:A【点评】本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断 p,q 的真假是解决本题的关键6 (5 分)6 把椅子排成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A144 B120 C72D24【分析】使用“插空法“第一步,三个人先坐成一排,有种,即全排,6 种;第二步,由于三个人必须隔开,因此必须先在 1 号位置与 2 号位置之间摆放一张凳子,2 号位置与 3 号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共 4
15、个空挡,随便摆放即可,即有种办法根据分步计数原理可得结论【解答】解:使用“插空法“第一步,三个人先坐成一排,有种,即全排,6 种;第二步,由于三个人必须隔开,因此必须先在 1 号位置与 2 号位置之间摆放一张凳子,2 号位置与 3 号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共 4 个空挡,随便摆放即可,即有种办法根据分步计数原理,64=24故选:D第 10 页(共 29 页)【点评】本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键7 (5 分)某几何体三视图如图所示,则该几何体的体积为( )A82B8 C8D8【分析】由已知中的三视图可得:该几何体是一个以俯视图为底
16、面的柱体,分别求出底面面积和高,代入柱体体积公式,可得答案【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的柱体,其底面面积 S=22212=4,柱体的高 h=2,故该几何体的体积 V=Sh=8,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,其中根据三视图分析出几何体的形状是解答的关键8 (5 分)设等差数列an的公差为 d,若数列为递减数列,则( )Ad0Bd0Ca1d0Da1d0第 11 页(共 29 页)【分析】由于数列2为递减数列,可得=1,解出即可【解答】解:等差数列an的公差为 d,an+1an=d,又数列2为递减数列,=1,a1d0故选:C【点评】本题考
17、查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题9 (5 分)将函数的图象向右平移个单位长度,所得图象对应的函数( )A在区间,上单调递增B在区间,上单调递减C在区间,上单调递减D在区间,上单调递增【分析】直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取 k=0 即可得到函数在区间,上单调递增,则答案可求【解答】解:把函数 y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin2(x)+即 y=3sin(2x) 当函数递增时,由,得取 k=0,得所得图象对
18、应的函数在区间,上单调递增第 12 页(共 29 页)故选:A【点评】本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题10 (5 分)已知点 A(2,3)在抛物线 C:y2=2px 的准线上,过点 A 的直线与C 在第一象限相切于点 B,记 C 的焦点为 F,则直线 BF 的斜率为( )ABCD【分析】由题意先求出准线方程 x=2,再求出 p,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线 AB 的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出 BF 的斜率【解答】解:点 A(2,3)在抛
19、物线 C:y2=2px 的准线上,即准线方程为:x=2,p0,=2 即 p=4,抛物线 C:y2=8x,在第一象限的方程为 y=2,设切点 B(m,n) ,则 n=2,又导数 y=2,则在切点处的斜率为,即m=2m,解得=2(舍去) ,切点 B(8,8) ,又 F(2,0) ,直线 BF 的斜率为,故选:D【点评】本题主要考查抛物线的方程和性质,同时考查直线与抛物线相切,运用导数求切线的斜率等,是一道基础题11 (5 分)当 x2,1时,不等式 ax3x2+4x+30 恒成立,则实数 a 的取值范第 13 页(共 29 页)围是( )A5,3 B6,C6,2 D4,3【分析】分 x=0,0x1
20、,2x0 三种情况进行讨论,分离出参数 a 后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对 a 取交集【解答】解:当 x=0 时,不等式 ax3x2+4x+30 对任意 aR 恒成立;当 0x1 时,ax3x2+4x+30 可化为 a,令 f(x)=,则 f(x)=(*) ,当 0x1 时,f(x)0,f(x)在(0,1上单调递增,f(x)max=f(1)=6,a6;当2x0 时,ax3x2+4x+30 可化为 a,由(*)式可知,当2x1 时,f(x)0,f(x)单调递减,当1x0 时,f(x)0,f(x)单调递增,f(x)min=f(1)=2,a2;综上所述,实数 a 的取
21、值范围是6a2,即实数 a 的取值范围是6,2故选:C【点评】本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集12 (5 分)已知定义在0,1上的函数 f(x)满足:f(0)=f(1)=0;对所有 x,y0,1,且 xy,有|f(x)f(y)|xy|若对所有 x,y0,1,|f(x)f(y)|m 恒成立,则 m 的最小值为( )ABCD第 14 页(共 29 页)【分析】依题意,构造函数 f(x)=(0k) ,分 x0,且 y0,;x0,且 y,1;x0,且 y,1;及当 x,1,且 y,1时,四类情况讨论,可证得对所
22、有 x,y0,1,|f(x)f(y)|恒成立,从而可得 m,继而可得答案【解答】解:依题意,定义在0,1上的函数 y=f(x)的斜率|k|,依题意可设 k0,构造函数 f(x)=(0k) ,满足f(0)=f(1)=0,|f(x)f(y)|xy|当 x0,且 y0,时,|f(x)f(y)|=|kxky|=k|xy|k|0|=k;当 x0,且 y,1,|f(x)f(y)|=|kx(kky)|=|k(x+y)k|k(1+)k|=;当 y0,且 x,1时,同理可得,|f(x)f(y)|;当 x,1,且 y,1时,|f(x)f(y)|=|(kkx)(kky)|=k|xy|k(1)=;综上所述,对所有 x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 辽宁省 高考 数学试卷 理科
限制150内