2017年山东省高考数学试卷(文科)(共18页).docx
《2017年山东省高考数学试卷(文科)(共18页).docx》由会员分享,可在线阅读,更多相关《2017年山东省高考数学试卷(文科)(共18页).docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)设集合M=x|x1|1,N=x|x2,则MN=()A(1,1)B(1,2)C(0,2)D(1,2)2(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A2iB2iC2D23(5分)已知x,y满足约束条件则z=x+2y的最大值是()A3B1C1D34(5分)已知cosx=,则cos2x=()ABCD5(5分)已知命题p:xR,x2x+10命题q:若a2b2,则ab,下列命题为真命题的是()ApqBpqCpqDp
2、q6(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()Ax3Bx4Cx4Dx57(5分)函数y=sin2x+cos2x的最小正周期为()ABCD28(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A3,5B5,5C3,7D5,79(5分)设f(x)=若f(a)=f(a+1),则f()=()A2B4C6D810(5分)若函数exf(x)(e=2.71828是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是(
3、)Af(x)=2xBf(x)=x2Cf(x)=3xDf(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11(5分)已知向量=(2,6),=(1,),若,则= 12(5分)若直线=1(a0,b0)过点(1,2),则2a+b的最小值为 13(5分)由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为 14(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x2)若当x3,0时,f(x)=6x,则f(919)= 15(5分)在平面直角坐标系xOy中,双曲线=1(a0,b0)的右支与焦点为F的抛物线x2=2py(p0)交于A,B两点,若|AF|+|BF|=4
4、|OF|,则该双曲线的渐近线方程为 三、解答题16(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游()若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;()若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率17(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=6,SABC=3,求A和a18(12分)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E平面ABCD,()证明:A1O平面B1
5、CD1;()设M是OD的中点,证明:平面A1EM平面B1CD119(12分)已知an是各项均为正数的等比数列,且a1+a2=6,a1a2=a3(1)求数列an通项公式;(2)bn 为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列的前n项和Tn20(13分)已知函数f(x)=x3ax2,aR,(1)当a=2时,求曲线y=f(x)在点(3,f(3)处的切线方程;(2)设函数g(x)=f(x)+(xa)cosxsinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值21(14分)在平面直角坐标系xOy中,已知椭圆C:=1(ab0)的离心率为,椭圆C截直线y=1所得线
6、段的长度为2()求椭圆C的方程;()动直线l:y=kx+m(m0)交椭圆C于A,B两点,交y轴于点M点N是M关于O的对称点,N的半径为|NO|设D为AB的中点,DE,DF与N分别相切于点E,F,求EDF的最小值2017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)设集合M=x|x1|1,N=x|x2,则MN=()A(1,1)B(1,2)C(0,2)D(1,2)【分析】解不等式求出集合M,结合集合的交集运算定义,可得答案【解答】解:集合M=x|x1|1=(0,2),N=x|x2=(,2
7、),MN=(0,2),故选:C【点评】本题考查的知识点是绝对值不等式的解法,集合的交集运算,难度不大,属于基础题2(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A2iB2iC2D2【分析】根据已知,求出z值,进而可得答案【解答】解:复数z满足zi=1+i,z=1i,z2=2i,故选:A【点评】本题考查的知识点是复数代数形式的乘除运算,难度不大,属于基础题3(5分)已知x,y满足约束条件则z=x+2y的最大值是()A3B1C1D3【分析】画出约束条件的可行域,利用目标函数的最优解求解即可【解答】解:x,y满足约束条件的可行域如图:目标函数z=x+2y经过可行域的A时,目标函数取
8、得最大值,由:解得A(1,2),目标函数的最大值为:1+22=3故选:D【点评】本题考查线性规划的简单应用,确定目标函数的最优解是解题的关键,考查计算能力4(5分)已知cosx=,则cos2x=()ABCD【分析】利用倍角公式即可得出【解答】解:根据余弦函数的倍角公式cos2x=2cos2x1,且cosx=,cos2x=21=故选:D【点评】本题考查了倍角公式,考查了推理能力与计算能力,属于基础题5(5分)已知命题p:xR,x2x+10命题q:若a2b2,则ab,下列命题为真命题的是()ApqBpqCpqDpq【分析】先判断命题p,q的真假,进而根据复合命题真假的真值表,可得答案【解答】解:命
9、题p:x=0R,使x2x+10成立故命题p为真命题;当a=1,b=2时,a2b2成立,但ab不成立,故命题q为假命题,故命题pq,pq,pq均为假命题;命题pq为真命题,故选:B【点评】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档6(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()Ax3Bx4Cx4Dx5【分析】方法一:由题意可知:输出y=2,则由y=log2x输出,需要x4,则判断框中的条件是x4,方法二:采用排除法,分别进行模拟运算,即可求得答案【解答】解:方法一:当x=4,输出y=2,则由y=lo
10、g2x输出,需要x4,故选B方法二:若空白判断框中的条件x3,输入x=4,满足43,输出y=4+2=6,不满足,故A错误,若空白判断框中的条件x4,输入x=4,满足4=4,不满足x3,输出y=y=log24=2,故B正确;若空白判断框中的条件x4,输入x=4,满足4=4,满足x4,输出y=4+2=6,不满足,故C错误,若空白判断框中的条件x5,输入x=4,满足45,满足x5,输出y=4+2=6,不满足,故D错误,故选B【点评】本题考查程序框图的应用,考查计算能力,属于基础题7(5分)函数y=sin2x+cos2x的最小正周期为()ABCD2【分析】利用辅助角公式,化简函数的解析式,进而根据值,
11、可得函数的周期【解答】解:函数y=sin2x+cos2x=2sin(2x+),=2,T=,故选:C【点评】本题考查的知识点是三角函数的周期性及其求法,难度不大,属于基础题8(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A3,5B5,5C3,7D5,7【分析】由已知有中这两组数据的中位数相等,且平均值也相等,可得x,y的值【解答】解:由已知中甲组数据的中位数为65,故乙组数据的中位数也为65,即y=5,则乙组数据的平均数为:66,故x=3,故选:A【点评】本题考查的知识点是茎叶图,平均数和中位数,难度不
12、大,属于基础题9(5分)设f(x)=若f(a)=f(a+1),则f()=()A2B4C6D8【分析】利用已知条件,求出a的值,然后求解所求的表达式的值即可【解答】解:当a(0,1)时,f(x)=,若f(a)=f(a+1),可得=2a,解得a=,则:f()=f(4)=2(41)=6当a1,+)时f(x)=,若f(a)=f(a+1),可得2(a1)=2a,显然无解故选:C【点评】本题考查分段函数的应用,考查转化思想以及计算能力10(5分)若函数exf(x)(e=2.71828是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()Af(x)=2xBf
13、(x)=x2Cf(x)=3xDf(x)=cosx【分析】根据已知中函数f(x)具有M性质的定义,可得f(x)=2x时,满足定义【解答】解:当f(x)=2x时,函数exf(x)=()x在R上单调递增,函数f(x)具有M性质,故选:A【点评】本题考查的知识点是函数单调性的性质,难度不大,属于基础题二、填空题:本大题共5小题,每小题5分,共25分11(5分)已知向量=(2,6),=(1,),若,则=3【分析】利用向量共线定理即可得出【解答】解:,62=0,解得=3故答案为:3【点评】本题考查了向量共线定理,考查了推理能力语音计算能力,属于基础题12(5分)若直线=1(a0,b0)过点(1,2),则2
14、a+b的最小值为8【分析】将(1,2)代入直线方程,求得+=1,利用“1”代换,根据基本不等式的性质,即可求得2a+b的最小值【解答】解:直线=1(a0,b0)过点(1,2),则+=1,由2a+b=(2a+b)(+)=2+2=4+4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,2a+b的最小值为8,故答案为:8【点评】本题考查基本不等式的应用,考查“1”代换,考查计算能力,属于基础题13(5分)由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为2+【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 山东省 高考 数学试卷 文科 18
限制150内