七年级数学《有理数》教案.doc
《七年级数学《有理数》教案.doc》由会员分享,可在线阅读,更多相关《七年级数学《有理数》教案.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020七年级数学有理数教案小学教案 汇报人:XXXXYour content to play here, or through your copy, paste in this box, and select only the text. Your content to play here, or through your copy, paste inthis box, and select only the text. 教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。有理数指整数可以看作分母为1的分数。下面就是小编整理的有理数教案,希望大家喜欢。 有理数教案1
2、 一、素质教育目标 (一)知识教学点 1.理解有理数乘方的意义. 2.掌握有理数乘方的运算. (二)能力训练点 1.培养学生观察、分析、比较、归纳、概括的能力. 2.渗透转化思想. (三)德育渗透点:培养学生勤思、认真和勇于探索的精神. (四)美育渗透点 把记成,显示了乘方符号的简洁美. 二、学法引导 1.教学方法:引导探索法,尝试指导,充分体现学生主体地位. 2.学生学法:探索的性质练习巩固 三、重点、难点、疑点及解决办法 1.重点:运算. 2.难点:运算的符号法则. 3.疑点:乘方和幂的区别. 与的区别. 四、课时安排 1课时 五、教具学具准备 投影仪、自制胶片. 六、师生互动活动设计 教
3、师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成. 七、教学步骤 (一)创设情境,导入 新课 师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么? 生:可以记作,读作的四次方. 师:呢? 生:可以记作,读作的五次方. 师:(为正整数)呢? 生:可以记作,读作的次方. 师:很好!把个相乘,记作,既简单又明确. 【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是
4、由计算正方体和体积得到的,而,是学生通过类推得到的. 师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明. 生:还可取负数和零.例如:000记,(-2)(-2)(-2)(-2)记作. 非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书). 【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数. (二)探索新知,讲授新课 1.求个相同因数的积的运算,叫做乘方. 乘方的结果叫做幂,相同的因
5、数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数. 注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂. 巩固练习(出示投影1) (1)在中,底数是_,指数是_,读作_或读作_; (2)在中,-2是_,4是_,读作_或读作_; (3)在中,底数是_,指数是_,读作_; (4)5,底数是_,指数是_. 【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数
6、1通常省略不写. 师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么? 学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答. 生:到目前为止,已经学习过五种运算,它们是: 运算:加、减、乘、除、乘方; 运算结果:和、差、积、商、幂; 教师对学生的回答给予评价并鼓励. 【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力. 师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明. 学生活动:学生积极思考,同桌相互讨论,并在练习本上举例. 【教法说明
7、】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想. 2.练习:(出示投影2) 计算:1.(1)2, (2), (3), (4). 2.(1),. (2)-2,. 3.(1)0, (2), (3), (4). 学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励. 师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系? 先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组. 生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的
8、任何次幂都是零. 师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢? 学生活动:学生积极思考,同桌之间、前后桌之间互相讨论. 生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等. 师:请同学思考一个问题,任何一个数的偶次幂是什么数? 生:任何一个数的偶次幂是非负数. 师:你能把上述结论用数学符号表示吗? 生:(1)当时,(为正整数); (2)当 (3)当时,(为正整数); (4)(为正整数); (为正整数); (为正整数,为有理数). 【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特
9、殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻. 有理数教案2 教学目标 1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则; 2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别; 3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程; 4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力; 5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。 教学建议 (一)重点、难点分析
10、本节教学的重点是依据法则熟练进行运算。难点是法则的理解。 (1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。 (2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。 (3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。 (二)知识结构 (三)教法建议 1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对
11、值等知识。 2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。 3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。 4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。 5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。 6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程
12、,让学生更好的理解有理数运算法则。 教学设计示例 (第一课时) 教学目的 1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算. 2.通过运算,培养学生的运算能力. 教学重点与难点 重点:熟练应用法则进行加法运算. 难点:法则的理解. 教学过程 (一)复习提问 1.有理数是怎么分类的? 2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么? 3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明? -3与-2;|3|与|-3|;|-3|与0; -2与|+1|;-|+4|与|-3|. (二)引入新课 在小学算术中学过了加、减、乘、除四则运算,这
13、些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算. (三)进行新课 (板书课题) 例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方? 两次行走后距原点0为8米,应该用加法. 为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况: 1.同号两数相加 (1)某人向东走5米,再向东走3米,两次一共走了多少米? 这是求两次行走的路程的和. 5+3=8 用数轴表示如图 从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米. 可见,正数加正数,其和仍
14、是正数,和的绝对值等于这两个加数的绝对值的和. (2)某人向西走5米,再向西走3米,两次一共向东走了多少米? 显然,两次一共向西走了8米 (-5)+(-3)=-8 用数轴表示如图 从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米. 可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和. 总之,同号两数相加,取相同的符号,并把绝对值相加. 例如,(-4)+(-5),同号两数相加 (-4)+(-5)=-( ),取相同的符号 4+5=9把绝对值相加 (-4)+(-5)=-9. 口答练习: (1)举例说明算式7+9的实际意义? (2)(-20)
15、+(-13)=? (3) 2.异号两数相加 (1)某人向东走5米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米. 5+(-5)=0 可知,互为相反数的两个数相加,和为零. (2)某人向东走5米,再向西走3米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米. 就是 5+(-3)=2. (3)某人向东走3米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米. 就是 3+(-5)=-2. 请同学们
16、想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定? 最后归纳 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0. 例如(-8)+5绝对值不相等的异号两数相加 8>5 (-8)+5=-( )取绝对值较大的加数符号 8-5=3 用较大的绝对值减去较小的绝对值 (-8)+5=-3. 口答练习 用算式表示:温度由-4上升7,达到什么温度. (-4)+7=3() 3.一个数和零相加 (1)某人向东走5米,再向东走0米,两次一共向东走了多少米? 显然,5+0=5.结果向东走了5米. (2)某人向西走
17、5米,再向东走0米,两次一共向东走了多少米? 容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米. 请同学们把(1)、(2)画出图来 由(1),(2)得出:一个数同0相加,仍得这个数. 总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况. 有理数加法运算的三种情况: 特例:两个互为相反数相加; (3)一个数和零相加. 每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法. (四)例题分析 例1 计算(-3)+(-9). 分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同
18、、相加的特征). 解:(-3)+(-9)=-12. 例2 分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值.(强调“两个较大”“一个较小”) 解: 解题时,先确定和的符号,后计算和的绝对值. (五)巩固练习 1.计算(口答) (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9); (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0; 2.计算 (1)5+(-22); (2)(-1.3)+(-8) (3)(-0.9)+1.5; (4)2.7+(-3.5) 探究活动 题目 (1
19、)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0; (2)在1,2,3,11,12十二个数的前面添加正号或负号,使它们的和为零; (3)在1,2,3,4,99,100一百个数的前面添加正号或负号,使它们的和为0; (4) 在解决这个问题的过程中,你能总结出一些什么数学规律? 参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2. 现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答: (1)得+1变为-1,有-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有理数 七年 级数 教案
限制150内