《第七节直流系统.pdf》由会员分享,可在线阅读,更多相关《第七节直流系统.pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一概述直流系统是发电厂厂用电中最重要的一部分,它应保证在任何事故情况下都能可靠和不间断地向其用电设备供电。发电厂的直流系统,主要用于对开关电器的远距离操作、信号设备、继电保护、自动装置及其他一些重要的直流负荷(如事故油泵、事故照明和不停电电源等)的供电。在大型发电厂直流系统中,采用蓄电池组作为直流电源。蓄电池组是一种独立可靠的电源,它在发电厂内发生任何事故,甚全在全厂交流电源都停电的情况下仍能保证直流系统中的用电设备可靠而连续的工作,在有大机组的电厂中设有多个彼此独立的直流系统。例如,单元控制室直流系统、网络控制室直流系统(又称升压所或升压站直流系统)和输煤直流系统等。对大型电厂,单元控制室和
2、升压站直流系统的设置应满足继电保护装置主保护和后备保护由两套独立直流系统供电的双重化配置原则。1、单元控制室直流系统对大机组的电厂,单元控制室直流系统,一般每台发电机组设置两套110V(或 115V)直流电源系统,统称为110V 直流系统,为继电保护、控制操作、信号设备及自动装置等直流负荷供电。其主要负荷是控制操作回路设备,故电厂中又常称这种直流电源为操作电源。除设置 110V 直流系统外,每一台机组另设一套220V(或 230V)直流系统,为发电机组事故润滑油泵、事故氢密封油泵、汽动给水泵的事故润滑油泵、不停电电源系统(UPS)及控制室的事故照明等直流动力负荷供心。220V 直流系统的特点是
3、,平时运行负荷很小,而机组事故时负荷很大。两套 110V 直流系统和一套220V直流系统均采用单母线、两线制、不接地系统。每套直流系统均设有相应电压的一组铅酸蓄电池。两套110V直流系统各配置一套蓄电池、一套充电器,另设一套可切换的公共备用充电器,跨接在两直流系统的母线上。220V 直流系统,设一组蓄电池,配置一套工作充电器,另设一套备用充电器。上述各直流系统中,工作充电器的电源均从相应机组的400V 交流保安母线引接;备用充电器的电源,一般也从400V 交流保安母线引接,有的则从其他厂用低压母线上引接,以防保安母线故障造成所有充电器失去电源。蓄电池组为无端电池设置方式,也就是不用设置端电压调
4、节器,采用恒压充电。正常工作时,蓄电池处于浮充电运行方式,每只蓄电池浮充电电压约为2.12 2.17V;事故放电后,采用均衡充电恢复蓄电池的容量,均衡充电电压每只约为2.3 2.35V。蓄电池的最终放电电压约为1.82V。115V 蓄电池组电压变化范围为95125V,230V蓄电池组电压变化范围为190250V。每段直流母线装设一套接地检测装置,当任一极(正、负极)发生接地故障时即发出报警信号。另外还有一套24V 直流电源系统,是供单元机组的仪控设备用的。2、网络控制室直流系统网络控制室直流系统,又常称为升压站直流系统。当发电厂升压站的控制对象有500KV的设备时,根据保护与控制双重化配置要求
5、,一般设置两套110V(或 220V)直流系统,两套直流系统均采用单母线、二线制、不接地的接线方式。每套直流系统配置一组铅酸蓄电池、一套工作充电器、另设一套可切换的跨接在两套直流系统母线上的公共备用充电器。两套独立的直流系统一起用于向网络控制室的控制、保护、信号等直流负荷供电。对于升压所的110V直流系统,通常其接线形式及有关的技术条件等参数与单元控制室的 110V直流系统相同;所不同之处在于升压所110V直流系统的充电电源,接自升压所的低压厂用母线。3动力直流系统每一台机组设一套220V(或 230V)动力直流系统,为发电机组事故润滑油泵、事故氢密封油泵、汽动给水泵的事故润滑油泵,不停电电源
6、系统(UPS)等直流动力负荷及控制室的事故照明供电。系统均采用单母线、两线制、不接地的接线方式,设一组蓄电池,配置一套工作充电器,另设一套备用充电器。系统的特点是,平时运行负荷很小,而机组发生事故时负荷很大。4输煤直流系统输煤系统一般设有6kV(或 3kV)交流配电装置,为了便于集中管理、提高可靠性,避免与其他直流电源相互干扰,设置了独立的输煤直流系统。输煤直流系统一般也为110V 单母线、两线制、不接地系统,一组蓄电池,两套充电器(一套工作、另一套备用)。因输煤系统对防酸要求较高,多采用封闭式铅酸蓄电池或镍镉蓄电池。二蓄电池的基础知识蓄电池是一种独立可靠的直流电源。尽管蓄电池投资大,寿命短,
7、且需要很多的辅助设备(如充电和浮充电设备、保暖、通风、防酸建筑等),以及建造时间长,运行维护复杂,但由于它具有独立而可靠的特点,因而在发电厂和变电站内发生任何事故时,即使在交流电源全部停电的情况下,也能保证直流系统的用电设备可靠而连续地工作。另外,不论如何复杂的继电保护装置、自动装置和任何型式的断路器,在其进行远距离操作时,均可用蓄电池的直流电作为操作电源。因此,促电池组在发电厂中不仅是操作电源,也是事故照明和一些直流自用机械的备用电源。蓄电池是储存直流电能的一种设备,它能把电能转变为化学能储存起来(充电),使用时再把化学能转变为电能(放电),供给直流负荷,这种能量的变换过程是可逆的,也就是说
8、,当蓄电池已部分放电或完全放电后,两级表面形成了新的化合物,这是如果用适当的反向电流通入蓄电池,就可使已形成的新化合物还原成原来的活性物质,供下次放电之用。在放电时,电流流出的电极称为正极或阳极,以“+”表示;电流经过外电路之后,返回电池的电极称为负极或阴极,以“”表示。根据电极或电解液所用物质的不同,蓄电池一般分为铅酸电池和碱性电池两种。下面以铅酸蓄电池为例,对蓄电池的构造、工作原理进行介绍。(一)铅酸电池的构造蓄电池由极板、电解液和容器构成,如图6-1 所示。极板分正极板和负极板,在正极板上的活性物质是二氧化铅(Pb2O),负极板上的活性物质是灰色海绵状的金属铅(铅绵),电解液是浓度为27
9、%-37%的硫酸水溶液(稀硫酸),其比重在.15C 时为 1:21,放电时比重稍为下降。521346二氧化铅硫酸铅铅硫酸铅硫酸水二氧化铅硫酸铅铅硫酸铅硫酸水(a)(b)图 7-1 蓄电池工作原理(a)蓄电池放电;(b)蓄电池充电1-容器;2-电解液;3-二氧化铅板(正极);4-铅版(负极);5-灯泡;6-直流发电机正极板采用表面式的铅板,在铅板表面上有许多肋片,这样可以增大极板与电解液的接触面积,以减少内电阻和增大单位体积的蓄电容量。负极板采用匣式的铅板,匣式铅板中间有较大的栅格,两边用有孔的薄铅皮加以峰盖,以防止多孔性物质(铅绵)的脱落。匣中充以参加电化学反应的活性材料,即将铅粉及稀硫酸等物
10、调制成浆糊状混合物,涂填在铅质栅格骨架上。极板在工厂经加工处理后,正极板的有效物质为深棕色二氧化铅,负极板中的有效物质式淡灰色绵状金属铅。正、负极板之间用多孔性隔板隔开,以使极板之间保持一定距离。电解液面应该比极板上边至少高出10mm,比容器上边至少低15-20mm。前者是为了防止反应不完全而使极板翘曲,后者是防止电解液沸腾时从容器内溅出。蓄电池中负极板总比正极板多一块,使正极板的两面在工作中起的化学作用尽量相同,以防止极板发生翘曲变形。同级性的极板用铅条连接成一组,此铅条焊接在极板的突出部分,并用耳柄挂在容器的边缘上。为了防止在工作过程中有效物质脱落到底部沉积,造成正、负极板短路,所以极板下
11、边与容器底部应有足够距离。容器上面盖以玻璃板,以防灰尘侵入和充电时电解液溅出。(二)蓄电池的工作原理把正、负极板互不接触而浸入容器的电解液中,在容器外用导线和灯泡把两种极板连接起来,如图7-1(a)所示,此时灯泡亮,因此二氧化铅板和铅板都与电解液中的硫酸起了化学变化,使两种极板之间产生了电动势(电压),在导线中有电流流过,即化学能变成了使灯泡发光的电能。这种由于化学反应而输出电流的过程称为蓄电池放电。放电是,正负极板上的活性物质都与硫酸发生了化学变化,生成硫酸铅PbS4O。当两极板上大部分活性物质都变成了硫酸铅后,蓄电池的端电压就下降。当端电压降到1.75-1.8V 以后,放电不宜继续下去,此
12、时两极板间的电压称为终止放电电压。在整个放电过程中,蓄电池中的硫酸逐渐减少而形成水,硫酸的浓度减少,电解液比重降低,蓄电池内阻增大,电动势下降,端电压也随之减少,此时,正极板为浅褐色,负极板为深灰色。必须注意,在正常使用情况下,蓄电池不宜过渡放电,因为在化学反应中生成的硫酸铅小晶块在过度放电后将结成体积较大的大晶块,晶块分布不均匀时,就会使极板发生不能恢复的翘曲,同时还增大了极板的电阻。放电时产生的硫酸铅大晶块很难还原,妨碍充电过程的进行。1.充电如果把外电路中的灯泡换成直流电源,即直流发电机或硅整流设备,并且把正极板接外电源的正极,负极板接外电源的负极,如7-1(b)所示,当外接电源的端电压
13、高于蓄电池的电势时,外接电源的电流就会流入蓄电池,电流的方向刚好与放电时的电流方向相反,于是在蓄电池内就产生了与上述相反的化学反应,就是说,硫酸从极板中析出,正极板又转化为二氧化铅,负极板又转化为纯铅,而电解液中硫酸增多,水减少。经过这种转化,蓄电池两极之间的电动势又恢复了,蓄电池又具备了放电条件。这时,外接电源的电能充进了蓄电池变成化学能而贮存了起来,这种过程称为蓄电池充电。充电过程使硫酸铅小晶块分别为二氧化铅(正极板)和铅绵(负极板),极板上的硫酸铅消失。由于充电反应逐渐深入到极板活性物质内部,硫酸浓度就增加,水分减少,溶液的密度增大,内阻减少,电势增大,端电压随之上升。当充电电压上升到大
14、约2.3V 时,极板上开始有气体析出:正极板上逸出氧气,负极板上逸出氢气,造成强烈的冒气现象,这种现象称为蓄电池的沸腾。沸腾的原因是负极板上硫酸铅已经很少了,化学反应逐渐转变为水的电解所造成。上述两种反应同时进行时,需要消耗更多的能量,浪费蒸馏水和电力,因此,为了维持恒定的充电电流,应逐渐提高外加电源的电压。为了减少能量耗损,防止极板活性物质脱落损坏,因此在充电终期时,充电电流不宜过大,在有气体放出时应减少充电电流。在充电终期时,正、负极的颜色由暗淡变为鲜明,蓄电池发生强烈的汽泡,当蓄电池端电压在2.5-2.7V 并经 1h 不变,即认为充电已完成。2.蓄电池自放电现象由于电解也中所含金属杂质
15、沉淀在负极板上,以及极板本身活性物质中也含有金属杂质,因此,在负极板上形成局部的短路,形成了蓄电池的自放电现象。通常在一昼夜内,铅蓄电池由于自放电,将使其容量减少0.5%-1%。自放电现象也随着电解液的温度、比重和使用时间的增长而增加。3.蓄电池放电和充电程度的测量已知放电时电解液因硫酸减少而变稀;充电时,电解液因硫酸增多而变浓。因此,电解液的浓度就代表着蓄电池放电和充电的程度。电解液的浓度用其密度大小来衡量。液体的比重是液体的质量与相同容积水的密度的比值。水的密度为1,蓄电池使用的纯硫酸的密度是1.83,因此电解液的比重总是大于1。具体数字要看其中所含硫酸的多少而定。蓄电池放电放得越多,电解
16、液中硫酸越少,比重就越小;反之,充电充的越多,电解液中硫酸越多,比重就越大。电解液的比重和温度有密切关系,例如温度升高,电解液受热膨胀,比重就降低。通常,在室内温度为20C 时,充足电的蓄电池,它的电解液比重是1.275-1.3;当蓄电池放电到电解液比重为1.13-1.18 时。它的正、负极板已接近于全部转化为硫酸铅,此时应该停止放电。电解液比重可以用比重计测量,但测试用的比重不可能测出极板细孔中电解液的比重,故必须在电池静止状态(停止充、放电时)进行测试较为准确。用电压表在蓄电池两极板之间测出的电压叫蓄电池的端电压。手电筒用的干电池,不论是几号电池,每节电池的额定电压都是1.5V。蓄电池的电
17、压与容量大小无关,额定电压均为2V。4.蓄电池的电势和容量蓄电池电势的大小与蓄电池极板上活性物质的电化性质和电解液的浓度有关,与极板的大小无关。当电极上活性物质已固定后,铅蓄电池的电势主要由电解液的浓度决定。因此,蓄电池的电势可近似由下式决定E=0.85+d(7-1)式中:d 为电解液的比重;E 为铅蓄电池的电势,V;0.85 为铅蓄电池电势的常数。电势与电解液的温度有关。当温度变化时,电解液的粘度要改变,粘度的改变会影响电解液的扩散,从而影响放电时的电势,因而引起蓄电池容量的变化。运行中蓄电池室的温度以保持在 10-20C 为宜,因为电解液在此温度范围内变化较小,对电势影响甚微,可忽略不计。
18、蓄电池在运行中,不允许电解液的温度超过35C。蓄电池的容量就是蓄电池的蓄电能力。通常以充足电的蓄电池在放电期间端电压降低10%时的放电电量来表示。一般以10h 放电容量作为蓄电池的额定容量。当蓄电池以恒定电流值放电时,其容量等于放电电流和放电时间的乘积,即CIt(7-2)式中:C 为蓄电池容量,Ah;I 为放电电流,A;t 为放电时间,h。蓄电池在使用过程中,其容量主要受放电率和电解液温度的影响。(1)放电率对蓄电池容量的影响。蓄电池每小时的放电电流称作放电率。蓄电池容量的大小随放电率的大小而变化,一般放电率越高,则容量越小,因蓄电池放电电流大时,极板上的活性物质与周围的硫酸迅速反应,生成品粒
19、较大的硫酸铅,硫酸铅晶粒易堵塞极板的细孔,使硫酸扩散到细孔深处更为困难。因此,细孔深处的硫酸浓度降低,活性物质参加化学反应的机会减少,电解液电阻增大,电压下降很快,电池不能放出全部能量,所以,蓄电池的容量较小。放电率越低,则容量越大,因蓄电池放电电流小时,极板上活性物质细孔内电解液的浓度与容器周围电解液的浓度相差较小,且外层硫酸铅形成得较慢,生成的晶粒也小,硫酸容易扩散到细孔深处,使细孔深处的活性物质都参加化学反应,所以,电池的容量就大。(2)电解液温度对蓄电池容量的影响。电解液温度愈高,稀硫酸粘度越低,运动速度越大,渗透力越强,因此电阻减小,扩散程度增大,电化学反应增强,从而使电池容量增大。
20、当电解液温度下降时,渗透减弱,电阻增大,扩散程度降低,电化学反应滞缓,从而使电池容量减小。电解液温度与电池容量的关系为25Q)25(008.0125TtI(7-3)式中:25Q为电解液平均温度为25C 时的容量,Ah;T 为放电过程中电解液的实际平均温度,C;25I为在电解液为25C 时的放电电流,A;t 为连续放电时间,h。三蓄电池组运行方式蓄电池的运行方式有两种;放电方式与浮充电方式。电厂的蓄电池组,普遍采用浮充电方式。(一)、充电方式运行特点所谓蓄电池组的充电方式运行,就是对蓄电池组进行周期性的充电和放电,当蓄电池组充足电以后,就与充电装置断开,由蓄电池组单独向经常性的直流负荷供电,并在
21、厂用电事故停电时,向事故照明和直流电动机等负荷供电。为了保证在任何时刻都不致失去直流电源,通常,当蓄电池放电到约为60%70%额定容量时,即开始进行充电,周而复始。按冲放电方式运行的蓄电池组,必须周期地、频繁地进行充电。在经常性负荷下,一般每隔 24h 就需充电一次,充至额定容量。充电末期,每个蓄电池的电压可达2.7 2.75V,蓄电池组的总电压(直流系统母线电压)可能会超过用电设备的允许值,母线电压起伏很大。为了保持母线电压,常需要增设端电池。这些,都可能是这种运行方式不被电厂普遍采用的主要原因。(二)、浮充电方式运行方式所谓蓄电池组浮充电方式:就是充电器经常与蓄电池组并列运行,充电器除供给
22、经常性直流负荷外,还以较小的电流浮充电电流向蓄电池组充电,以补偿蓄电池的自放电损耗,使蓄电池经常处于完全充足的状态;当出现短时大负荷时,例如当断路器合闸、许多断路器同时跳闸、直流电动机、直流事故照明等,则主要由蓄电池组供电,而硅整流充电器,由于其自身的限流特性决定,一般只能提供略大于其额定输出的电流值。在浮充电器的交流电源消失时,便停止工作,所有直流负荷完全由蓄电池组供电。浮充电电流的大小,取决于蓄电池的自放电率,浮充电的结果,应刚好补偿蓄电池的自放电。如果浮充电的电流过小,则蓄电池的自放电就可能长期得不到足够的补偿,将导致极板硫化(极板有效物质失效)。相反,如果浮充电电流过大,蓄电池就会长期
23、过充电,引起极板有效物质脱落,缩短电池的使用寿命,同时还多余地消耗了电能。浮充电电流值,依蓄电池类型和型号而不同,一般约为(0.1 0.2)NC/100(A),其中NC为该型号蓄电池的额定容量(单位为Ah)。旧蓄电池的浮充电电源要比新蓄电池大23 倍。为了便于掌握蓄电池的浮充电状态,通常以测量单个蓄电池的端电压来判断。如对于铅酸蓄电池,若其单个的电压在2.15 2.2V,则为正常浮充电状态;若其单个的电压在2.25V及以上,则为过充电;若其单个的电压在2.1V 以下,则为放电状态。因此,为了保证蓄电池经常处于完好状态,实际中的浮充电,常采用恒压充电的方式。标准蓄电池的浮充电电压规定如下:(1)
24、每只铅酸蓄电池(电解液密度为1.215g/3cm),其浮充电电压一般取2.15 2.17V。(2)每只中倍率镉镍蓄电池,其浮充电电压一般取1.42 1.45V。(3)每只高倍率镉镍蓄电池,其浮充电电压一般取1.35 1.39V。按浮充电方式运行的有端电池的蓄电池组,参与浮充电运行的蓄电池的只数应该固定,运行人员用监视直流母线的电压为恒定,去调节浮充电机的输出,而不应该用改变端电池的分头去调节母线电压。按浮充电方式运行的蓄电池组,每23 个月,应进行一次均衡充电,以保持极板有效物质的活性。(三)、蓄电池均衡充电均衡充电是对蓄电池的一种特殊充电方式。在蓄电池长期使用期间,可能由于充电装置调整不合理
25、、表盘电压表读数偏高等原因,造成蓄电池组欠充电,也可能由于各个蓄电池的自放电率不同和电解液密度有差别,使它们的内阻和端电压不一致,这些都将影响蓄电池的效率和寿命。为此,必须进行均衡充电(也称过充电),使全部蓄电池恢复到完全充电状态。均衡充电,通常也采用恒压充电,就是用较正常浮充电电压更高的电压进行充电,充电的持续时间与采用的均衡充电电压有关对标准蓄电池,均衡充电电压的一般范围是:(1)每个铅酸蓄电池,一般去2.25 2.35V,最高不超2.4V。(2)每个中倍率镉镍蓄电池,一般取1.52 1.55V。(3)每个高倍率镉镍蓄电池,一般取1.47 1.50V。均衡充电一次的持续时间,既与均充电压大
26、小有关,也与蓄电池的类型有关。例如按浮充电方式运行的铅酸蓄电池,一般每季进行一次均衡充电。当每只蓄电池均衡充电电压为2.26V 时,充电时间约为48h;当均衡充电电压为2.3V/只时,充电时间约为24h;当均衡充电电压为2.4V/只时,充电时间约为810h。以浮充电方式运行的蓄电池组,每一次均衡充电前,应将浮充电气停役10min,让蓄电池充分地放电,然后再自动地加上均衡充电电压。有端电池的蓄电池组,均衡充电开始前,应该先停用浮充电机,再逐步升高端电池的分头,调节母线电压保持恒定,直到端电池的分头升到最大时,重新开启浮充电机,以均衡充电电压进行充电。均衡充电开始后,逐步降低端电池的分头,调节母线
27、电压保持恒定,直到端电池的分头将到最低时,通用浮充电机,均衡充电结束。然后再逐步升高端电池的分头,调节母线电压保持恒定,直到端电池的分头升到原先浮充电方式的分头位置时,开启浮充电机,恢复浮充电方式,再以直流母线电压为恒定,调节浮充电机的输出。如此操作方式,可以使包括所有端电池在内的全部蓄电池都进行了一次均衡充电。三我厂直流监测系统我厂直流监测系统所选用的智能型高频开关直流电源系统由监控部分、充电模块、防雷模块、降压 模块、绝缘监测单元、电池巡检单元、馈线回路、蓄电池等组成,直流电源系统可以与后台监控系统通讯,实现无人值守。(一)高频开关充电模块1、工作原理充电模块工作原理如图:尖峰抑制EMI滤
28、波器全桥AC/DC无源PFC高频DC/AC高频整流LC滤波EMI滤波 380VAC220VDC控制、保护显示、调节通信、监控图72 充电模块工作原理示意图如图所示,三相380V 交流电首先经过尖峰抑制和EMI 电路,主要作用是防止电网上的尖峰和谐波干扰串入模块中,影响控制电路的正常工作;同时也抑制模块主开关电路产生的谐波,防止传输到电网上,对电网污染,其作用是双向的。三相交流电经过工频整流后变成脉动的直流,在滤波电容和电感组成的PFC 滤波电路的作用下,输出约520V 左右的直流电电压。电感同时具有无源功率因数校正的作用,使模块的功率因数达到0.92。主开关 DC/AC 电路将 520V 左右
29、的直流电转换为50KHz 的高频脉冲电压在变压器的次级输出。DC/AC变换采用移相谐振高频软开关技术。变压器输出的高频脉冲经过高频整流、LC 滤波和 EMI 滤波,变为220/110V 的直流电压。PWM 控制电路采用电压电流双环控制,以方便实现对输出电压的调整和输出电流的限制,即使在短路情况下,回缩电路起作用,不会损坏模块,提高模块工作的可靠性。同时将交流输入采样得到的前馈信号送入PWM 控制电路,提高电路工作的稳定性。另一方面,为了实现模块输出的遥调,计算机输出的数字信号经D/A 变换后送入PWM 控制器对输出电压进行调整。监控电路监测到模块异常时,使模块停止输出,有效保护模块。2功能特点
30、无级限流:输出电流根据负载电流和蓄电池容量手动或监控系统自动调节;自然冷却:模块冷却方式采用自然冷却,提高模块在恶劣环境的工作能力;自主工作:脱离监控系统也可以单独运行,可以手动调节模块电压、电流;过压保护:充电模块输出电压一旦超过内部设置的过压保护点,便自动关机,停止输出。只有重新开机才能启动输出。防止充电模块输出过压损坏外部设备。短路回缩:充电模块外部输出发生短路时,充电模块自动降低输出电压和电流。有效防止外部事故对充电模块的损坏和事故的进一步扩大。均流技术:充电模块采用了先进的低差自主均流技术,均分负载不平衡小于5%(通常在 3%左右)。保护自动恢复:充电模块内部具有完善的保护功能,一旦
31、引起保护的条件消失,保护自动解除,模块恢复工作。保护点和恢复点之间有“回差”,防止电路在保护点附近频繁启动保护动作。高可靠性:关键器件全部采用高质量的进口名牌产品,并经过严格的筛选及高温老化。3 面板说明在充电模块的面板上有电源指示灯(绿色),保护指示灯(黄色),故障指示灯(红色)。电源指示灯:指示充电模块内部工作电源是否正常。保护指示灯:指示充电模块处于保护状态,包括交流输入过/欠压,输入缺相,输出欠压,模块过温等,一般故障消失后自动恢复。故障指示灯:指充电模块因故障停止输出,且故障因素消除后,模块仍不能恢复工作,如输出过压,只有断电后重新送电才能启动输出。如仍不能恢复工作,则模块需检修。电
32、压调节:精密电位器用来整定模块自主工作时输出电压值(出厂整定为充电机浮充电压)。电流调节:精密电位器用来整定模块最大限流值(出厂整定为最大)。4技术参数(1)输入输出参数交流输入电压380VAC 20%(304V 456V)输入频率50Hz10%输出电压220V 110V 输出电流5A、10A、20A 10A、20A、40A 电流调节范围0.2Imax Imax 稳压精度 0.5%(典型值0.1%)稳流精度 0.5%纹波系数 0.05%(典型值0.01%)效率92%噪声45dB(2)保护参数输入过压保护460 4V 输入欠压保护300 4V 输出过压保护280V4V、1402V 输出欠压保护1
33、94 4V、972V 过温保护90保护,80后恢复可靠性指标(MTBF)100000 小时显示器采用大屏幕5.7 英寸 320 x240 液晶,全中文显示,每一画面最多可显示20 列*15行汉字,画面分为5 个部分,即 题头栏、时间、信息栏、主参数栏 和菜单栏,题头栏显示产品名称;时间栏显示日期和时间;信息栏为主要信息获取视窗,同时也可作为大面域的键盘使用;主参数栏显示系统状态、合母电压、控母电压、电池电流和充电方式;菜单栏显示一些主要的菜单,如上、下翻页按钮。通过视窗式结构设计可使维护人员操作一目了然,及时掌握系统运行信息,操作非常方便,同时考虑到触摸屏有限的分辨率,本系统将作为输入界面的按
34、钮做得尽量大一些,充分利用5.7 英寸这个有限的空间,使误操作率降到最低,完全实现人性化设计。(二)画面介绍1基本画面基本画面即系统上电时显示的画面,也即系统默认画面,当系统在一段时间(2 分钟)内没操作时,系统自动回到基本画面,当系统正常时,基本画面显示公司徽标,当系统出现异常时系统自动显示当前故障信息,如由图所示,维护人员可在最短的时间内掌握故障信息。在主参数栏用大字体显示系统最为重要的参数,如系统状态、合母电压、控母电压、电池电流和充电方式。2信息查询在信息查询菜单中用户可查询系统实时运行参数,包括交流参数、直流参数、模块参数、电池巡检、绝缘检测、历史故障、充放电曲线、放电计量、其它设备
35、查询和版本说明。(1)。交流参数 包括两路三线交流电压、一路交流电流和交流接触器工作状态。其中交流电压同时显示线电压和相电压。(2)。直流参数 查询中包括合母电压、控母电压电流、电池电压电流、环境温度和电池温度。当系统母线分段或配有2 组电池时,可配置 2 个直流检测单元,用户可通过上下翻页查看2 个检测单元的实测数据。(3)。模块参数:系统自动根据用户设定的充电模块数量显示每一模块的输出电压、输出电流、开关机状态和其它模块信息。(4)。电池巡检:系统自动根据用户配置的电池节数和电池类型巡检并显示电池巡检结果,包括单体电池电压和单体电池内阻。用户可通过翻页查询,每页显示9 节电池信息。如右图所
36、示。其中有上角的“01”表示当前显示的12:00:00电池管理12:02:000:交流单元通信故障系统设置电力操作电源智能监控系统V2.0V245系统故障电池电流04-06-02A-50信息查询合母电压1:充电模块 1故障V2:充电模块 2故障控母电压12:03:00220模块控制3:直流单元 1通信故障12:01:0012:03:00信息栏菜单栏时间栏主参数栏题头栏单体电压/内阻:合母电压控母电压V01/02-104-06-02002:12.35V 3.00m下页003:12.35V 3.00mA004:12.35V 3.00m12:00:00008:12.35V 3.00m-50005:1
37、2.35V 3.00m电力操作电源智能监控系统V2.0006:12.35V 3.00m系统故障007:12.35V 3.00mV245009:12.35V 3.00m电池电流220001:12.35V 3.00m上页退出保存是第一页,“02”表示共有2 页,后面的“1”表示当前显示第一组电池巡检结果。(5)。绝缘检测:当系统配有绝缘检测单元时,用户可从绝缘检测页面中查询到各母线对地电压和故障支路对地电阻值。同样若配有2 个单元以上时,用户可上下翻页查询。(6)。历史故障:中是显示以前出现过的故障,且现在已经排除的故障,系统自动记录每条故障的产生时间和排除时间并显示在每条故障的下面,每页显示3
38、条故障,共可记录30 条历史故障,从后往前依次翻页查询。如右图所示。(7)。充放电曲线:如右图所示显示了电池充放电时电压和电流的实际变化情况,该曲线采样点为每10 分钟采样一次,最多可记录30 天数据。当数据不止 1页时,可按“选择”键,然后按“前翻”、“后翻”键翻页查询。当系统配有2 组电池时,可直接按“上页”、“下页”查询。(8)。其它设备:中可查询通信模块和逆变模块的输出电压和电流。3.模块控制模块控制是对充电模块开关机的手动控制,具体操作方法与参数设置方法相同。同时用户也可以通过后台通信实现远程遥控功能。4电池管理电池管理是电力电源监控系统的重要组成部分,所以本系统将电池管理功能直接在
39、基本画面中进入,突出其重要性。用户可以根据电池实际运行情况手动控制电池均浮充转换,当用户不手动控制电池均浮充转换时,系统自动根据用户设定的电池管理合母电压24512:00:00220退出-50控母电压电力操作电源智能监控系统V2.0V1/03故障01:充电模块 01故障V发生时间:04-06-01 12:00:00消除时间:04-06-01 12:00:05A故障02:充电模块 02故障下页发生时间:04-06-01 12:00:05系统故障消除时间:04-06-01 12:00:10历史故障:消除时间:04-06-01 12:00:15电池电流04-06-02发生时间:04-06-01 12
40、:00:10上页保存故障03:充电模块 03故障控母电压合母电压60V12:00:00退出-50-60下页电池电流V12保存245At(小时)第01页 共32页I电力操作电源智能监控系统V2.0300180系统故障04-06-02220上页电力操作电源智能监控系统V2.0245系统故障二组电池:浮充04-06-02均充电压:253.0V220电池容量:200Ah浮充电压:245.0V12:00:00均充限时:18小时上页维护均充:30天控母电压合母电压下页V延时均充:120分钟退出温度补偿:0.00V/一组电池:浮充-50A电池电流V保存电池巡检245直流参数电力操作电源智能监控系统V2.0退
41、出220绝缘检测A放电计量12:00:00-50系统故障下页模块参数04-06-02上页合母电压控母电压电池电流充放曲线历史故障保存其它设备V版本说明V交流参数条件进行电池的智能化均浮充管理。其中可设置的参数有均浮充电压、电池容量、温度补偿系数(温度补偿范围:10-50)和其它均浮充转换条件,如右图所示。电池充电曲线图UI交流恢复交流 中断正常 运行自动恒流恒压初始充 电正常 运行3 h3 h3 h0.01 C10A0.1C1 0A0.01 C1 0A0.01 C1 0AUeNUfNtU/IN:电池 组节 数C1 0:电 池容量UeNUeNUfNUfNUe:单体 电 池均充电 压Uf:单 体电
42、 池浮 充 电压稳流均充 电 流稳流 均充时间均 充保护时 间放电试验-KM180A馈线20回QAS400充电模块 40Ax5至交流电源UVWNAmVmA600Ah 52只400A63AQPS250QAS400600Ah 52只400A充电模块 40Ax5放电试验mVmAmVmAmVmAVmVmAVmVmAQPS250+KM1VAVAA80A馈线20回至交流电源UVWN63A电池巡检仪250A250AQF1125Q21Q15Q11QPA12DAT12VPV12PA22DAT22PV22VPA21DAT21PV21PA11DAT11PV11PV13DVT13PV23DVT23Q12Q11QF12
43、Q22Q21QF221FU011FU021FU041FU032FU042FU032FU012FU02Q101Q120Q201Q220FS11D级防雷装置C级防雷装置FS22FS211FU051FU062FU052FU06FS12D级防雷装置C级防雷装置监测装置微机绝缘监测装置微机绝缘电池巡检仪图 我厂 110V 直流系统-KM1监测装置微机绝缘监测装置微机绝缘-KM2馈线12回QP1250充电模块20Ax12至交流电源U VWNVD级防雷装置C级防雷装置AmVmA2000Ah/2V104只1250A160AQAS400充电模块20Ax12mVmAmVmAVmVmAVmVmA+KM1+KM2VAVA电池巡检仪QP1000QP1000放电试验QSA250至交流电源U VWND级防雷装置C级防雷装置160A馈线12回QAS400300A300AQF1112Q11Q1PA121FU031FU04DAT12PV12Q11Q12Q22Q21PA11DAT11PV11Q14PA22DAT22PV222FU032FU04QF2112Q21Q2Q13PV13DVT13PV23DVT23Q101Q112Q201Q212FU05FU06FU01FU021FU071FU082FU072FU08图 我厂 220V 直流系统
限制150内