《人教版六年级上册数学知识点归纳.pdf》由会员分享,可在线阅读,更多相关《人教版六年级上册数学知识点归纳.pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、分数乘法1分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。例如:?5的意义是:表示求5个?连加的和的简便运算。2分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。3一个数与分数相乘,可以看作是求这个数的几分之几是多少。例如:5?的意义是:表示求5的?是多少。0.8?的意义是:表示求0.8 的?是多少。4分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。)注意:当带分数进行乘法计
2、算时,要先把带分数化成假分数再进行计算。5整数乘法的交换律、结合律和分配律,对分数乘法同样适用。6乘积是 1的两个数 互为倒数。7求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。1的倒数是 1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。8一个数(0除外)乘以一个真分数,所得的积小于它本身。例如:153214 10一个数(0除外)乘以一个带分数,所得的积大于它本身。例如:3613136。11分数应用题一般解题步骤。(1)找出含有分率的关键句。(2)找出单位“1”的量(以后称为“标准量”)(3)
3、画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。(4)根据线段图写出等量关系式:标准量对应分率=比较量。(5)根据已知条件和问题列式解答。12乘法应用题有关注意概念。(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?单位“1”对应分率=对应量(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“是、比、相当于、占、等于”后的规则。(3)甲比 乙多几分之几表示 甲比乙多的数占乙的几分之几,乙比甲少 几分之几表示 乙比甲少的数占甲 的几分之几。(甲乙)乙=甲 乙 1(甲乙)甲=1 乙 甲(4)江氏规则:多比少多
4、,少比多少。如 8比 5多,6比9少,在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即 800千克比 750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“
5、甲比乙多几分之几”、“甲比乙少几分之几”的形式。(7)乘法应用题中,单位“1”是已知的。(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。(9)分率与量要对应。多的比较量对多的分率;少的比较量对少的分率;增加的比较量对增加的分率;减少的比较量对减少的分率;提高的比较量对提高的分率;降低的比较量对降低的分率;工作总量的比较量对工作总量的分率;工作效率的比较量对工作效率的分率;部分的比较量对部分的分率;总量的比较量对总量的分率;分数除法1分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。例如:8
6、32表示:已知两个数的积是与其中一个因数,求另一个因数是多少。(8 里面有多少个32)2分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘以这个分数的倒数。3一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。4分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。5两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。从应用的角度理解,比可以分为同类量比和不同类量比;同类量比表示倍数关系,比的前项和后项必须单位一致;不同类量比的结果产生新的量,比的前项和后项的单位不相同。6比值通常用分数、小数和整数表示。7比的后项不能为0。8同除法
7、比较,比的前项相当于被除数,后项相当于除数,比值相当于商;9根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。10比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。转化为加减法理解:比的前项和后项同时加上或减去各自对应的倍数(减1倍除外),比值不变11在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。12一个数(0除外)除以一个真分数,所得的商大于它本身。13一个数(0除外)除以一个假分数,所得的商小于或等于它本身。14一个数(0除外)除以一个带分数,所得的商小于它本身。已知一个数的几分之几是多
8、少,求这个数,用除法计算;对应量对应分率=单位“1”四则混合运算1分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。2在分数四则混合运算中,可以应用运算定律使计算简便。运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。百分数1百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率 或百分比。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。2百分数的意义:表示一个数是另一个数的百分之几。例如:25的
9、意义:表示一个数是另一个数的25。3百分数通常不写成分数形式,而在原来分子后面加上“”来表示。分子部分可为小数、整数,可以大于100,小于100或等于 100。4小数与百分数互化的规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。5百分数与分数互化的规则:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。6百分率公式:合格率=产品总数合格产品数 100%发芽率=实验种子数发芽种子数100%出勤率=应出勤人数出勤人数
10、100%达标率=学生总人数达标学生人数100%成活率=总棵数成活的棵数100%含盐率=盐水的质量盐的质量100%小麦出粉率=小麦的质量面粉的质量100%出油率=农作物的质量油的质量100%7纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。8纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全。9纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。10应纳税额:缴纳的税款叫应纳税额。11税率:应纳税额与各种收入的比率叫做税率。12应纳税额的计算:应纳税额各种收入税率13储蓄的意义:人们常常把暂
11、时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。14存款的类型:存款分为活期、整存整取、零存整取等方式。15本金:存入银行的钱叫做本金。16利息:取款时银行多支付的钱叫做利息。17国家规定,存款的利息要按一定的税率纳税。国债的利息不纳税。18利率:利息与本金的比值叫做利率。19银行存款税后利息的计算公式:税后利息本金利率时间(税率)20银行存款利息的税金利息税率或银行存款利息的税金本金利率时间税率21国债利息的计算公式:利息本金利率时间22本息:本金与利息的总和叫做本息。23、打折:商店降价出售商品。(盈、亏的单位“1”一般是
12、指成本价)圆1圆的定义:平面上的一种曲线图形。2将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。3半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r 表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4圆心确定圆的位置,半径确定圆的大小。5直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d 表示。6在同一个圆内,所有的半径都相等,所有的直径都相等。7在同一个圆内,有无数条半径,有无数条直径。8在同一个圆内,直径的长度是半径的2 倍,半径的长度是直径的一半。用字母表示为:d2r 或 r 2d9圆的周长:围成
13、圆的曲线的长度叫做圆的周长。10圆的周长总是直径的3 倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,它是一个无限不循环小数,用字母表示。在计算时,取 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。11圆的周长公式:C=d 或 C=2r 12、圆的面积:圆所占面积的大小叫圆的面积。13把圆平均分成若干份,然后把它们剪开,可以拼成一个近似长方形的图形,这个长方形的长相当于圆的周长的一半(2C=r),长方形的宽相当于圆的半径(r),因此长方形的面积等于圆的面积,所以圆的面积是r r=r2 14圆的面积公式:2或者 S=(2d)2或者 S=(C2)215在一个
14、正方形里画一个最大的圆,圆的直径等于正方形的边长。r2 2:2:(2r)2 =2r2:2:4r216在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。17一个环形,外圆的半径是R,内圆的半径是r(其中 Rr环的宽度)圆环的面积(铺小路的面积)=大圆的面积 小圆的面积=R2r2=(R2r2)18环形的周长外圆周长内圆周长19半圆的周长等于圆的周长的一半加直径。半圆的周长公式:d 2 d 或 r 2r 20半圆面积圆的面积2 公式为:2 2 21在同一个圆里,半径扩大或缩小几倍,直径和周长也扩大或缩小相同的倍数;面积则扩大或缩小对应数平方倍。例如:在同一个圆里,半径扩大倍,那么直径和周长就都扩
15、大倍,而面积扩大倍。22两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。S小正:S圆:S大正=2:4 例如:两个圆的半径比是:,那么这两个圆的直径比和周长比都是:,而面积比是:。23当一个圆的半径增加,它的周长就增加;当一个圆的直径增加,它的周长就增加。24在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积占圆面积的几分之几;所对的弧占圆周长的几分之几。25周长相等的三角形、平行四边形、长方形、正方形和圆,它们的面积依次增大。面积相等的三角形、平行四边形、长方形、正方形和圆,它们的周长依次减少。26扇形弧长公式:d360n 扇形的面积公式:S=2360n (n 为扇形的圆心角度数)27轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。28只有 1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。只有 2条对称轴的图形是:长方形只有 3条对称轴的图形是:等边三角形只有 4条对称轴的图形是:正方形;只有 5条对称轴的图形是:正五边形、五角星;有无数条对称轴的图形是:圆、圆环。29直径所在的直线是圆的对称轴。位置1找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。
限制150内