化工热力学教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案合集最新课件汇编.ppt
《化工热力学教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案合集最新课件汇编.ppt》由会员分享,可在线阅读,更多相关《化工热力学教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案合集最新课件汇编.ppt(319页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、面向面向21世纪课程教材世纪课程教材化工热力学化工热力学绪论绪论 Introduction化工热力学的目的、意义和范围Thermo-dynamics,是讨论热与功的转化规律。经典热力学建立在热力学三个基本定律之上。运用数学方法,可以得到热力学性质之间的关系。本课程的主要目的是运用经典热力学原理来解决如下实际问题:(1)过程进行的可行性分析和能量有效利用;(2)平衡状态下的热力学性质计算。即流体的性质随着温度、压力、相态、组成等的变化。计算机的广泛应用为化工过程设计所需热力学数据的获取,以及模型化提供了强有力的基础。热力学性质流体的性质有热力学性质和传递性质之分。前者是指物质处于平衡状态下压力、
2、体积、温度、组成以及其他的热力学函数,如内能、焓、热容、熵、自由能等。后者是指物质和能量传递过程的非平衡特性,如导热系数、粘度、扩散系数等。热力学原理指出:能够从易测量性质(如压力、摩尔体积、温度、组成、低压热容等)来推算较难测量的性质(如焓、内能、熵、吉氏函数、亥氏函数、热容、逸度、逸度系数、活度系数等)。推算这些性质,需要输入物质的基础数据,如分子量、正常沸点、临界参数、蒸汽压甚至混合物的共沸点等性质。教材的附录中列出了部分物质的基础数据。热力学基本概念回顾热力学基本概念回顾系统与环境物质与能量的交换封闭系统敞开系统孤立系统强度性质与容量性质与系统的物质量无关的性质称为强度性质,如系统的温
3、度T、压力P等。反之,与系统中物质量的多少有关的性质称为容量性质,如系统的总体积Vt、总内能Ut等。单位质量的容量性质即为强度性质。系统的状态是由系统的强度性质所决定的。将确定系统所需要的强度性质称为独立变量,其数目可从相律计算。状态函数与过程函数与系统状态变化的途径无关,仅取决于初态和终态的量称为状态函数。状态函数与系统变化途径无关的特性对系统性质变化的计算很有意义。平衡状态与可逆过程平衡状态是一种静止状态,系统与环境之间净流(物质和能量)为零。平衡状态的定量描述是本教材的重要内容。均相系统的平衡状态较为简单,而非均相系统的平衡状态首先表现为各相之间的相平衡。在相平衡状态下,各相之间的净流为
4、零,各相即为平衡状态下的均相系统。可逆过程是系统经过一系列平衡状态所完成的,其功耗与沿同路径逆向完成该过程所获得的功是等量的。实际过程都是不可逆过程。可逆过程是实际过程的理想极限。热力学过程与循环系统的变化总是从一个平衡状态到另一个平衡状态,这种变化称为热力学过程。热力学过程可以不加任何限制,也可以使其按某一预先指定的路径进行,常见的热力学过程主要有:等温过程、等压过程、等容过程、等焓过程、等熵过程、绝热过程、可逆过程等,也可以是它们的组合。热力学循环是指系统经过某些过程后,又回到了初态。如卡诺循环是理想的热功转化循环,工业上涉及热功转换的制冷循环、动力循环等具有实际意义。本课程中将对重要的热
5、力学循环进行定量分析。热力学基本量纲热力学基本量纲关于热力学SI(InternationalSystemofUnits)Time,t-second,sLength,l-meter,mMass,m-kilogram,KgForce,F-newton,N(F=ma)Temperature,T-Kelvintem.,K(temperature,t-Celsiustem.,Fahrenheittem.,)T(K)=t()+273.15t()=1.8t()+32体积,V-volume,m3(或l,ml)压力,p-absolutepressure,MPa(atm,)能量,E-energy,Joule,J(
6、Nm)第第2章章 -关系和状态方程关系和状态方程Chapter 2 P-V-T Relations and Equation of State(EOS)本章要点1引言2纯物质的P-V-T相图3状态方程(EOS)立方型高次型4对应态原理5流体的饱和热力学性质6混合物的状态方程混合法则7理想气体的性质8状态方程体积根的求解1引言流体P-V-T是重要的热力学数据,广泛应用于工程中,并有广泛的积累;P、V、T数据容易实验测量;是认识P-V-T关系的基础;是建立EOS的基础;EOS是P-V-T关系的解析形式,由此可以推算实验数据之外信息;EOS是反映体系特征的模型,对推算其它物性有重要的意义;EOS+C
7、Pig理论上可计算所有的热力学性质。2纯物质的P-V-T相图纯物质的P-V-T立体相图相:物理和化学性质相同的系统纯物质的P-T图三相点t(tri-phase)临界点C(critical)平衡曲线vaporandgas的区别:TC液体气体(汽体)无相变化纯物质的P-V图二相区纯物质的P-V-T相图P-V-T相图特征、相关概念单相区(V,G,L,S)两相共存区(V/L,L/S,G/S)饱和线过热蒸汽过冷液体三相线(V/L/S)临界点超临界流体(TTc和PPc)纯物质的P-T图P-T图的特征、相关概念单相区两相平衡线(饱和曲线)m汽化曲线-t到到cm熔化曲线-m升华曲线-趋向0K三相点(Tt,Pt
8、)-纯物质和混合物临界点(Tc,Pc,Vc)-可以无相变化等容线m临界等容线V=Vc、VVc、VTc、T0;Patt0Prep=RT/(V-b)(很多情况下如此)Patt=-a(T)/f(V)a(T)是T的函数,f(V)是V的二次函数b称体积参数,a称能量参数;a,b通称方程常数常数立方型方程在确定方程常数常数时,一般使用临界等温线在临界点的特性。4-1vanderWaals(vdW)方程第一个同时计算汽,液两相,表达临界点的方程其它立方型方程的基础形式简单,a,b是常数,准确度低,实际应用少计算常数采用了临界等温线在临界点的条件关于vdW常数和临界压缩因子Zc临界等温线在C点的斜率和曲率等于
9、零解方程组得方程常数可得到方程常数多用pc、Tc表示(VC不如pc、Tc可靠)关于状态方程的Zc值vdW给出了一个固定的Zc,即Zc=0.375。多数Zc在0.230.29之间,明显低于vdW方程的Zc。可见vdW方程计算准确性不会好。二参数立方型方程,若根据临界点条件确定常数,只能给出一个固定的Zc,这是两参数立方型方程的不足之处;方程形式不同,给出的Zc值不同(主要与f(V)有关)。Zc值是状态方程优劣的标志之一(改进的方向,但不唯一)。4-2Redlich-Kwong(RK)方程改变了方程的引力项Patt,以使得计算的V减小(或者说,使方程的Zc值减小),试图改进方程计算P-V-T的准确
10、性;用同于vdW方程的方法得到常数a,b;和Zc值RK方程常数Zc=1/3=0.333RK方程计算气相体积准确性有了很大提高RK方程计算液相体积的准确性不够不能同时用于汽、液两相计算(准确性)4-3SoaveRK(SRK)方程沿用了Prep,将RK方程的a/T0.5改成为a(T)=ac(Tr,);SRK规定(Tr=1,)=1,所以在临界点时,RK与SRK完全一样,所以,SRK的Zc=1/3;若用临界点条件确定常数,SRK与RK常数关系ac=aRK/Tc0.5b=bRKSRK方程常数a(T)=ac(Tr,),其中是一个纯物质的特性常数,称为偏心因子,可以查表得到。Soave通过拟合纯物质烃的蒸汽
11、压数据,得到这样就可以从纯物质的Tc,Pc和计算SRK常数SRK方程的特点在临界点同RK,Zc=1/3(偏大);计算常数需要Tc,Pc和(比RK多),a是温度的函数;除了能计算气相体积之外,能用于表达蒸汽压(汽液平衡),是一个适用于汽、液两相的EOS,但计算液相体积误差较大;为了改善计算液相体积的准确性,Peng-Robinson提出了PR方程。4-4Peng-Robinson(PR)PR方程的特点Zc=0.307,更接近于实际情况,虽较真实情况仍有差别,但PR方程计算液相体积的准确度较SRK确有了明显的改善;计算常数需要Tc,Pc和,a是温度的函数;能同时适用于汽、液两相;工业中得到广泛应用
12、在提供的计算软件Thermo-Pro中,用PR作为状态方程模型,用于均相性质、纯物质饱和性质、混合物汽液平衡计算等。5多常数(高次型)状态方程立方型方程形式简单,常数可以从Tc、Pc和计算;数学上有解析的体积根;但计算准确性不高。方程常数更多的高次型状态方程,适用的范围更大,准确性更高,但复杂性和计算量增大,随着电算技术的发展,多常数方程的应用受到重视,多常数方程包含了更多的流体的信息,具有更好的预测流体性质的能力;多常数方程的基础是维里virial方程维里(virial)方程B、C(或B、C)称作第二、三维里virial系数,其系数之间也有相互关系。两种形式的virial方程是等价的,但实际
13、中常用密度型的virial方程两项或三项截断式。微观上,virial系数反映了分子间的相互作用,宏观上,virial系数仅是温度的函数任何状态方程都可以通过级数展开,转化为virial方程的形式两项维里virial方程截断式通过T就可以计算出第二维里系数B。从P-V-T数据来确定B,C第二virial系数与Boyle温度TB第二virial系数与ZP图上的等温线在p0时的斜率有关随着温度的升高,ZP图上的等温线在P0时的斜率由负变为正,第二virial系数B只在某一温度下变为零,这一温度称为Boyle温度,用TB表示,即B(TB)=0,或另外,要注意:Benedict-Webb-Rubin(B
14、WR)方程原先为八个常数方程。经普遍化处理后,能从纯物质的临界压力、临界温度和偏心因子估算常数。BWR方程的数学形式上的规律性不好,常用于石油加工中烃类化合物的计算。现已有12常数型,20常数型,25常数型,36常数型,甚至更多的常数。MH-55方程有九个常数,常数的求取很有特色,只需要输入纯物质的临界参数和某一点的蒸汽压数据,就能从数学公式计算出所有的常数准确度高,适用范围广,能用于非极性至强极性化合物MH方程现已广泛地应用于流体P-V-T、汽液平衡、液液平衡、焓等热力学性质推算。总结P-V-T相图是EOS的基础,必须掌握相图上和点、线、面,相关概念,相互关系;状态方程的基本用途是P-V-T
15、计算,但更大意义在于作为推算其它性质的模型;立方型状态方程由于形式简单,计算方便受到工程上的重视,特别是SRK和PR由于适用汽液两相,能用于汽液平衡;多常数方程在使用范围和计算准确性方面有优势;应用时应根据实际情况和方程特点选择。计算实例演示例题2-26对应态原理(CSP)vanderWaals首先提出了二参数对应态原理,可以将vdW方程转化为二参数对应态原理方程两参数CSP对应态原理:在相同对比温度、对比压力下,任何气体或液体的对比体积(或压缩因子)是相同的;一定意义上是普遍化方程(只含有Tc和Pc,没有其它物性参数):只能适合于简单的球形流体。其它的对比热力学性质之间也存在着较简单的对应态
16、关系;两参数对应态原理计算准确性不好。Z=PV/RT=PrVr/R/TrPcVc/Tc=ZcPrVr/Tr=Z(Tr,Pr,Zc)=Z(Tc,Pc)(vdW 的Zc=0.375)或三参数CSPLydersen等引入Zc作为第三参数根据Zc=0.23、0.25、0.27和0.29四组,得到此三参数CSP还不够合理。对比参数对量子气体如Pitzer的三参数CSP用偏心因子为第三参数,Z=Z(Tr,Pr,)Z(0)是简单流体的压缩因子,第二项的偏导数项用Z(1)表示,是研究流体相对于简单流体的偏差。它们都是对比参数Tr、pr的函数。得到了Z(0)和Z(1)的图表,见附录。提供从简单流体的性质推算其它
17、流体性质的思路:即将简单流体作为研究的基准。Lee-Kesler和Teja方程(0),(r)和(r1),(r2)是不同的参考流体思路是:从参考流体的状态方程得到研究流体的状态方程不同参考流体影响推算研究流体性质的可靠性三参数CSP的比较Pitzer的Z(0)和Z(1)是图表形式,参考流流体是简单流体(球形流体)。L-K和Teja是解析形式,参考流体是非球形流体,参考流体需要状态方程。对应态关系不仅是Z,对其它性质如H,S等也能得到对应态关系,但Z是最基本的,是推算其它性质的基础。形状因子CSP研究流体()的P-V-T关系与参考流体(0)的状态方程联系起来三参数CSP与形状因子CSP比较从参考流
18、体的EOS得到研究流体的EOS两都的形式不同,前者用了第三参数,后者则用了保形参数据(或形状因子)例题2-3若在vdW方程增加一个常数c,使之成为三常数的立方型方程(如下),并采用式2-1和2-2及使状 态 方 程 满 足 纯 流 体 的 真 实 临 界 点(Tc,Pc,Vc)三个条件来确定方程常数a,b,c,则方程就能给出纯物质真实的临界压缩因子Zc。并进一步证明由此可以得到一个三参数对应态方程,请导出对应态方程。令代入第三式,得将a,b,c代入状态方程,并整理得这就是一个三参数对应态状态方程它能完全正确地给出纯流体的Zc,但并不能说明这样的状态方程就比SRK、PR等更优秀判断一个状态方程的
19、优劣,应从表达热力学性质总体上考察,并非只是临界点一个标准例题2-4估计正丁烷在425.2K和4.4586MPa时压缩因子。(实验值为0.2095)与实验数据的偏差为4.2%查表时应仔细以上是已知T,P求V,若已知T,V求P如何?例题2-5Redial方程是一个较优秀的蒸汽压方程。现已通过测定正丁醇(1)和正辛醇(2)的蒸汽压数据并得到了它们的Redial方程常数分别是和。现欲知正己醇的蒸汽压与温度的关系,试用对应态原理估计。已知正丁醇、正己醇和正辛醇的偏心因子分别是0.59、0.56和0.53。解:7流体的饱和热力学性质流体饱和热力学性质主要包括:蒸汽压,汽化焓,汽化熵,饱和汽、液相摩尔体积
20、等饱和热力学性质都能表示在P-T或P-V图上采用经典热力学原理,结合状态方程都能求出它们(第5章介绍),但也常用一些简单的专业方程计算。纯物质饱和蒸汽压、汽化焓和汽化熵纯物质在一定温度(Tc)下,能使汽液共存的压力即为蒸汽压,表示为ps平衡汽化过程的焓变化和熵变化分别称为汽化焓和汽化熵(Hvap,Svap)它们都是属于非均相性质,仅是T的函数,并相互联系纯物质汽液平衡关系式是Clapeyron方程Clapeyron 是T的函数,由此可以积分求蒸汽压方程为了得到蒸汽压方程,变形Clapeyron方程Zvap=VvapPs/R/T经修正后得到重要的Antoine方程附录A-2给出部分物质的Anto
21、ine常数,A,B,C 注意:温度使用范围注意:温度使用范围若温度函数不同的温度函数,将得到不同的蒸汽压方程从蒸汽压方程可以计算汽化焓其它的PT关系例题2-6HCN的汽固平衡与汽液平衡蒸汽压分别为求(a)汽化潜热;(b)升华潜热;(c)熔化潜热;(d)三相点;(e)正常沸点。由P-T相图知,三相点即为汽固平衡线与汽液平衡线的交点将Ps=101325Pa代入汽平衡线中即可以解出正常沸点为Tb=298.85K本题中的平衡线方程较为简单,使得潜热正好与温度无关熔化潜热计算中也是认为它与温度无关令但焓随温度的变化式见2-47式。饱和液体摩尔体积VslP-V相图上的曲线状态方程都能计算(通过T,Ps)v
22、irial方程能计算Vsl推荐专门液体方程修正的Rackett方程附录A-3中给出部分物质的 和 的数值s:saturated例题2-7计算异丁烷在273.15K时饱和蒸汽压和饱和液体摩尔体积(实验值分别为152561Pa和100.1cm3 mol-1),并估计饱和汽相摩尔体积,进一步计算异丁烷在273.15K时的汽化焓(实验值为20594.86J mol-1)、熵、内能、吉氏函数和亥氏函数的变化。解:AntoinePs修正的RackettEq.VslvirialVsvClapeyron+AntoineHvap其它的性质(见文本)也可以用PR方程软件计算,精度差些。8混合法则状态方程首先是针对
23、纯物质提出,含特征参数(如方程常数、临界参数等)的状态方程能用于纯物质P-V-T或其它热力学性质计算将混合物看成一个虚拟的纯物质,并具有虚拟的特征参数,用这些虚拟的特征参数代入纯物质的状态方程中,就可以计算混合物的性质了混合法则是指混合物的虚拟参数与混合物的组成和纯物质的参数之间的关系式混合法则的建立可以依据理论指导,但是目前尚难以完全从理论上得到混合法则应用混合物性质计算纯物质和混合物体系的符号规定virial方程的混合法则Bij=(Bi+Bj)/2Bij=(BiBj)0.5virial方程的混合法则,对建立其它方程的混合法则有指导意义RK方程的混合法则SRK和PR方程的混合法则MH-81方
24、程的混合法则关于混合法则从纯物质的性质计算混合物的性质经验法则体积参数、能量参数的形式有一定规则特别注意混合物体系中摩尔性质的表示法(符号形式)掌握立方形式方程的混合法则,了解其它的类型的混合法则,如多常数方程、CSP等9理想气体状态理想气体状态在热力学中的重要性m用于高温低压体系的性质计算m我们无法得到U、H、S、A、G等函数的绝对值,实际应用中常得到基于理想气体状态的相对值m经典热力学原理表明:从P-V-T及+CPig,能计算所有的热力学性质,所以,离不开理想气体的热容CPig理想气体状态是一个假想的模型理想气体等压热容热容是通过量热方法来测定。但常压下气体的热容更多的由光谱测定与统计力学
25、结合的方法获得。文献中所报道的常压下的热容可以作为理想气体等压热容使用。注意省略了上标“ig”附录A-4中可查出有关物质的等压热容方程系数a,b,c,d理想气体混合物的性质例题2-10两个同处于T,P下的纯理想气体1、2,等温、等压混合成组成为y1和y2的混合物。求混合过程的热力学性质变化。解:理想气体的等温过程有;U=H=0由于又是等压过程,故有V=0;同样CV=CP=0混合过程的组分1和2的压力变化分别为求立方型方程的体积根数值求根 f(V)=P(T,V)-P=0Newton-Raphson迭代法需要求导数,需要根的初值例题2-9用PR状态方程重复例题2-2的计算(用教材配套的热力学性质计
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化工 热力学 教材 课件 汇总 完整版 ppt 全套 教学 教程 电子 教案 全书 最新 汇编
链接地址:https://www.taowenge.com/p-76341304.html
限制150内