《高等数学》(同济六版)教学课件★第1章.函数与极限.ppt
《《高等数学》(同济六版)教学课件★第1章.函数与极限.ppt》由会员分享,可在线阅读,更多相关《《高等数学》(同济六版)教学课件★第1章.函数与极限.ppt(93页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学高等数学(同同济六版六版)教学教学课件件第第1章章.函数与极限函数与极限目录 上页 下页 返回 结束 一、一、函数极限与数列极限的关系及夹逼准则函数极限与数列极限的关系及夹逼准则1.函数极限与数列极限的关系函数极限与数列极限的关系定理定理1.有定义,为确定起见,仅讨论的情形.有目录 上页 下页 返回 结束 定理定理1.有定义,且设即当有有定义,且对上述 ,时,有于是当时故可用反证法证明.(略)有证:证:当“”“”目录 上页 下页 返回 结束 定理定理1.有定义且有说明说明:此定理常用于判断函数极限不存在.法法1 找一个数列不存在.法法2 找两个趋于的不同数列及使目录 上页 下页 返回
2、结束 例例1.证明不存在.证证:取两个趋于 0 的数列及有由定理 1 知不存在.目录 上页 下页 返回 结束 2.函数极限存在的夹逼准则函数极限存在的夹逼准则定理定理2.且(利用定理1及数列的夹逼准则可证)目录 上页 下页 返回 结束 圆扇形AOB的面积二、二、两个重要极限两个重要极限 证证:当即亦即时,显然有AOB 的面积AOD的面积故有注注注 目录 上页 下页 返回 结束 例例2.求解解:例例3.求解解:令则因此原式目录 上页 下页 返回 结束 例例4.求解解:原式=例例5.已知圆内接正 n 边形面积为证明:证证:说明说明:计算中注意利用目录 上页 下页 返回 结束 2.证证:当时,设则(
3、P5354)目录 上页 下页 返回 结束 当则从而有故说明说明:此极限也可写为时,令目录 上页 下页 返回 结束 例例6.求解解:令则说明说明:若利用则 原式目录 上页 下页 返回 结束 例例7.求解解:原式=目录 上页 下页 返回 结束 的不同数列内容小结内容小结1.函数极限与数列极限关系的应用(1)利用数列极限判别函数极限不存在(2)数列极限存在的夹逼准则法法1 找一个数列且使法法2 找两个趋于及使不存在.函数极限存在的夹逼准则目录 上页 下页 返回 结束 2.两个重要极限或注注:代表相同的表达式目录 上页 下页 返回 结束 思考与练习思考与练习填空题填空题 (14)作业作业 P56 1
4、(4),(5),(6);2 (2),(3),(4);4 (4),(5)第七节 目录 上页 下页 返回 结束 第一章 都是无穷小,第七节引例引例.但 可见无穷小趋于 0 的速度是多样的.无穷小的比较目录 上页 下页 返回 结束 定义定义.若则称 是比 高阶高阶的无穷小,若若若若或设是自变量同一变化过程中的无穷小,记作则称 是比 低阶低阶的无穷小;则称 是 的同阶同阶无穷小;则称 是关于 的 k 阶阶无穷小;则称 是 的等价等价无穷小,记作目录 上页 下页 返回 结束 例如例如,当时又如又如,故时是关于 x 的二阶无穷小,且目录 上页 下页 返回 结束 例例1.证明:当时,证证:例例2.证明:证证
5、:目录 上页 下页 返回 结束 因此 即有等价关系:说明说明:上述证明过程也给出了等价关系:目录 上页 下页 返回 结束 定理定理1.证证:即即例如例如,故目录 上页 下页 返回 结束 定理定理2.设且存在,则证证:例如例如,目录 上页 下页 返回 结束 设对同一变化过程,为无穷小,说明说明:无穷小的性质,(1)和差取大规则和差取大规则:由等价可得简化某些极限运算的下述规则.若 =o(),(2)和差代替规则和差代替规则:例如,例如,(见下页例3)目录 上页 下页 返回 结束(3)因式代替规则因式代替规则:界,则例如,例例3.求解解:原式 目录 上页 下页 返回 结束 例例4.求解解:目录 上页
6、 下页 返回 结束 例例5.证明:当时,证证:利用和差代替与取大规则和差代替与取大规则说明说明目录 上页 下页 返回 结束 内容小结内容小结1.无穷小的比较设 ,对同一自变量的变化过程为无穷小,且 是 的高阶无穷小 是 的低阶无穷小 是 的同阶无穷小 是 的等价无穷小 是 的 k 阶无穷小目录 上页 下页 返回 结束 2.等价无穷小替换定理思考与练习思考与练习Th 2P59 题1,2 作业作业 P59 3;4(2),(3),(4);5(3)常用等价无穷小:第八节 目录 上页 下页 返回 结束 二、二、函数的间断点函数的间断点 一、一、函数连续性的定义函数连续性的定义 第八节函数的连续性与间断点
7、 第一章 目录 上页 下页 返回 结束 可见,函数在点一、一、函数连续性的定义函数连续性的定义定义定义:在的某邻域内有定义,则称函数(1)在点即(2)极限(3)设函数连续必须具备下列条件:存在;且有定义,存在;目录 上页 下页 返回 结束 continue若在某区间上每一点都连续,则称它在该区间上连续,或称它为该区间上的连续函数连续函数.例如例如,在上连续.(有理整函数)又如又如,有理分式函数在其定义域内连续.在闭区间上的连续函数的集合记作只要都有目录 上页 下页 返回 结束 对自变量的增量有函数的增量左连续右连续当时,有函数在点连续有下列等价命题:目录 上页 下页 返回 结束 例例.证明函数
8、在内连续.证证:即这说明在内连续.同样可证:函数在内连续.目录 上页 下页 返回 结束 在在二、二、函数的间断点函数的间断点(1)函数(2)函数不存在;(3)函数存在,但不连续:设在点的某去心邻域内有定义,则下列情形这样的点之一,函数 f(x)在点虽有定义,但虽有定义,且称为间断点间断点.在无定义;目录 上页 下页 返回 结束 间断点分类间断点分类:第一类间断点第一类间断点:及均存在,若称若称第二类间断点第二类间断点:及中至少一个不存在,称若其中有一个为振荡,称若其中有一个为为可去间断点可去间断点.为跳跃间断点跳跃间断点.为无穷间断点无穷间断点.为振荡间断点振荡间断点.目录 上页 下页 返回
9、结束 为其无穷间断点.为其振荡间断点.为可去间断点.例如例如:目录 上页 下页 返回 结束 显然为其可去间断点.(4)(5)为其跳跃间断点.目录 上页 下页 返回 结束 内容小结内容小结左连续右连续第一类间断点可去间断点跳跃间断点左右极限都存在 第二类间断点无穷间断点振荡间断点左右极限至少有一个不存在在点间断的类型在点连续的等价形式目录 上页 下页 返回 结束 思考与练习思考与练习1.讨论函数x=2 是第二类无穷间断点.间断点的类型.2.设时提示提示:3.P65 题 3,*8为连续函数.答案答案:x=1 是第一类可去间断点,目录 上页 下页 返回 结束 P65 题题*8 提示提示:作业作业 P
10、65 4;5 第九节 目录 上页 下页 返回 结束 备用题备用题 确定函数间断点的类型.解解:间断点为无穷间断点;故为跳跃间断点.目录 上页 下页 返回 结束 一、连续函数的运算法则一、连续函数的运算法则 第九节二、初等函数的连续性二、初等函数的连续性 连续函数的运算与初等函数的连续性 第一章 目录 上页 下页 返回 结束 定理定理2.连续单调递增函数的反函数也连续单调递增.在其定义域内连续一、连续函数的运算法则一、连续函数的运算法则定理定理1.在某点连续的有限个函数经有限次和,差,积,(利用极限的四则运算法则证明)商(分母不为 0)运算,结果仍是一个在该点连续的函数.例如例如,例如例如,在上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 同济 教学 课件 函数 极限
限制150内