数学文化概论31.ppt
《数学文化概论31.ppt》由会员分享,可在线阅读,更多相关《数学文化概论31.ppt(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章第一章 概论概论 第一节第一节 文化与数学文化文化与数学文化第二节第二节 数学的数学的定义及其定义及其重要性重要性第三节第三节 数学的语言数学的语言及其及其特点特点第四节第四节 数学发展简史数学发展简史1.41.4 数学发展简史数学发展简史 数数学学的的发发展展史史大大致致可可以以分分为为四四个个本本质质上上不不同同的的时时期(阶段):期(阶段):第一个时期第一个时期数数学学形成时期。这形成时期。这是是人类建立人类建立最基本的数最基本的数学学概念的时期概念的时期。第二个时期第二个时期初等数学初等数学(即常即常量量数学数学)时期。时期。这个时期的基本的、最简单的成果构成现在中学数学这个时期
2、的基本的、最简单的成果构成现在中学数学的主要内容。的主要内容。第三个时期第三个时期变量数学时期。变量数学时期。第四个时期第四个时期现代数学时期现代数学时期。1.4.11.4.1 数学形成时期数学形成时期 人类从数数开始逐渐建立了自然数的概念,简单人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最简单的几何形式,逐步地形成的计算法,并认识了最简单的几何形式,逐步地形成了理论与证明之间的逻辑关系的了理论与证明之间的逻辑关系的“纯粹纯粹”数学。数学。这一时期,这一时期,算术与几何还没有分开,彼此紧密地算术与几何还没有分开,彼此紧密地交错着。交错着。1.4.21.4.2 常量数学时期常量数
3、学时期 这这个个时时期期从从公公元元前前5 5世世纪纪开开始始,也也许许更更早早一一些些,直直到到1717世世纪纪,大大约约持持续续了了两两千千年年。在在这这个个时时斯斯逐逐渐渐形形成了初等数学的主要分支:算术、几何、代数、三角。成了初等数学的主要分支:算术、几何、代数、三角。按按照照历历史史条条件件不不同同,可可以以把把常常量量(初初等等)数数学学史史分分为为三三个个不不同同时时期期:希希腊腊的的、东东方方的的和和欧欧洲洲文文艺艺复复兴兴时代的时期时代的时期。希腊时期正好与希腊文化普遍繁荣的时代希腊时期正好与希腊文化普遍繁荣的时代一一致致。到到公公元元前前3 3世世纪纪,在在最最伟伟大大的的
4、古古代代几几何何学学家家欧欧几几里里得得、阿阿基基米米德德、阿阿波波罗罗尼尼奥奥斯斯的的时时代代达达到到了了顶顶峰峰,而而终终止止于于公公元元6 6世世纪纪,当当时时最最光光辉辉的的著著作作是是欧欧几几里里得得的的原原本本。尽尽管管这这部部书书是是两两千千多多年年以以前前写写成成的的,但但是是它它的的一一般般内内容容和和叙叙述述的的特特征征,却却与与我我们们现现在在通通用用的的几几何何教科书非常相近。教科书非常相近。希希腊腊人人不不仅仅发发展展了了初初等等几几何何,并并把把它它导导向向完完整整的的体体系系,还还得得到到许许多多非非常常重重要要的的结结果果。例例如如,他他们们研研究究了了圆圆锥锥
5、曲曲线线:椭椭圆圆、双双曲曲线线、抛抛物物线线;证证明明了了某某些些属属于于射射影影几几何何的的定定理理,以以天天文文学学的的需需要要为为指指南南建建立立了了球球面面几几何何,以以及及三三角角学学的的原原理理,并并计计算算出出最最初初的的正正弦弦表表,确定了许多复杂图形的面积和体积。确定了许多复杂图形的面积和体积。在在算算术术与与代代数数方方面面,希希腊腊人人也也做做了了不不少少工工作作。他他们们奠奠定定了了数数论论的的基基础础,并并研研究究丢丢番番图图方方程程,发发现现了了无无理理数数,找找到到了了求求平平方方根根、立立方方根根的的方方法法,知知道道算算术术级级数与几何级数的性质。数与几何级
6、数的性质。应应该该指指出出,远远在在这这以以前前好好几几个个世世纪纪,我我国国的的算算术术和和代代数数已已达达到到很很高高的的水水平平。在在公公元元前前2 2世世纪纪到到l l世世纪纪已已有有了了三三元元一一次次联联立立方方程程组组的的解解法法。同同时时在在历历史史上上第第一一次次利利用用负负数数,并并且且叙叙述述了了对对负负数数进进行行运运算算的的规规则则,也也找到了求平方根与立方根的方法。找到了求平方根与立方根的方法。在在几几何何方方面面希希腊腊人人已已接接近近“高高等等数数学学”。阿阿基基米米德德在在计计算算面面积积与与体体积积时时已已接接近近积积分分运运算算,阿阿波波罗罗尼尼奥奥斯关于
7、圆锥曲线的研究接近于解析几何。斯关于圆锥曲线的研究接近于解析几何。随随着着希希腊腊科科学学的的终终结结,在在欧欧洲洲出出现现了了科科学学萧萧条条,数学发展的中心移到了印度、中亚细亚和阿拉伯国家。数学发展的中心移到了印度、中亚细亚和阿拉伯国家。在在这这些些地地方方,从从5 5世世纪纪到到1515世世纪纪的的一一千千年年中中间间,数数学学主主要要由由于于计计算算的的需需要要,特特别别是是由由于于天天文文学学的的需需要要而而得得到到发发展展。印印度度人人发发明明了了现现代代记记数数法法,引引进进了了负负数数,并并把把正正数数与与负负数数的的对对立立和和财财产产与与债债务务的的对对立立及及直直线线上上
8、两两个个方方向向的的对对立立联联系系了了起起来来。他他们们开开始始像像运运用用有有理理数数一一样样运运用用无无理理数数,他他们们给给出出了了表表示示各各种种代代数数运运算算包包括括求求根根运运算算的的符符号号。由由于于他他们们没没有有对对无无理理数数与与有有理理数数的的区别感到困惑,从而为代数打开了真正的发展道路。区别感到困惑,从而为代数打开了真正的发展道路。“代数代数”这个词本身起源于这个词本身起源于9 9世纪的数学家和世纪的数学家和天天文文学学家家穆穆罕罕默默德德伊伊本本穆穆斯斯阿阿里里花花拉拉子子米米。花花拉拉子子米米的的著著作作基基本本上上建建立立了了解解方方程程的的方方法法。从从这这
9、时时起起,求求方方程程的的解解作作为为代代数数的的基基本本特特征征被被长长期期保保持持了了下下来来。他他的的代代数数著著作作在在数数学学史史上上起起了了重重大大作作用用,因因为为这这部部作作品品后后来来被被翻翻译译成成拉拉丁丁语语,曾曾长长期期作作为为欧欧洲洲主主要的教科书。要的教科书。中中亚亚细细亚亚的的数数学学家家们们找找到到了了求求根根和和一一系系列列方方程程的的近近似似解解的的方方法法,找找到到了了“牛牛顿顿二二项项式式定定理理”的的普普遍遍公公式式,他他们们有有力力地地推推进进了了三三角角学学,把把它它建建成成一一个个系系统统,并并造造出出非非常常准准确确的的正正弦弦表表。这这时时中
10、中国国科科学学的的成成就就开开始始传传人人邻邻国国。约约在在公公元元6 6世世纪纪我我国国已已经经会会解解简简单单的的不不定定方方程,知道几何中的近似计算以及三次方程的近似解法。程,知道几何中的近似计算以及三次方程的近似解法。到到1616世世纪纪,所所缺缺少少的的主主要要是是对对数数及及虚虚数数,还还缺缺乏乏字字母母符符号号系系统统。正正像像在在远远古古时时代代,为为了了运运用用整整数数,应应该该制制定定表表示示它它们们的的符符号号一一样样,现现在在为为了了运运用用任任意意数数并并对对它它们们给给出出一一般般规规则则,就就应应该该制制定定相相似似的的符符号号。这这个个任任务务从从希希腊腊时时代
11、代就就开开始始而而直直到到1717世世纪纪才才完完成成,在在笛笛卡卡儿和其他人的工作中最后形成了现代符号系统。儿和其他人的工作中最后形成了现代符号系统。在在科科学学复复兴兴时时期期,欧欧洲洲人人向向阿阿拉拉伯伯学学习习,并并且且根根据据阿阿拉拉伯伯文文的的翻翻译译熟熟识识了了希希腊腊科科学学。从从阿阿拉拉伯伯沿沿袭袭过过来的印度计数法逐渐地在欧洲确定了下来。来的印度计数法逐渐地在欧洲确定了下来。16 16世纪,欧洲科学终于越过了先人的成就。例世纪,欧洲科学终于越过了先人的成就。例如如意意大大利利人人塔塔尔尔塔塔利利亚亚和和费费拉拉里里在在一一般般形形式式上上先先解解了了三三次次方方程程,然然后
12、后四四次次方方程程。在在这这个个时时期期第第一一次次开开始始运运用用虚虚数数。现现代代的的代代数数符符号号也也制制造造出出来来了了,其其中中不不仅仅出出现现了了表表示示未未知知数数的的字字母母符符号号,也也出出现现了了表表示示已已知知数数的的字母符号字母符号,这是韦达在这是韦达在15911591年作出的。年作出的。正正是是在在这这一一时时期期,英英国国的的纳纳皮皮尔尔发发明明了了供供天天文文作作参参考考的的对对数数,并并在在16141614年年发发表表。布布里里格格斯斯算算出出第第一一批批十进对数表是在十进对数表是在16241624年。年。当当时时在在欧欧洲洲也也出出现现了了“组组合合论论”和
13、和“牛牛顿顿二二项项式式定定理理”的的普普遍遍公公式式;级级数数知知道道得得更更早早,所所以以初初等等代代数数的的建建立立是是完完成成了了,以以后后则则是是向向高高等等数数学学,即即变变量量数数学学的过渡。的过渡。1.4.31.4.3 变量数学时期变量数学时期 1616世世纪纪,封封建建制制度度开开始始消消亡亡,资资本本主主义义开开始始发发展展并并兴兴盛盛起起来来。在在这这一一时时期期中中,家家庭庭手手工工业业,手手工工业业作作坊坊逐逐渐渐地地改改革革为为工工场场手手工工业业生生产产,并并进进而而转转化化为为以以使使用机器为主的大工业。因此,对数学提出了新的要求。用机器为主的大工业。因此,对数
14、学提出了新的要求。这这时时,对对运运动动的的研研究究变变成成了了自自然然科科学学的的中中心心问问题题。实实践践的的需需要要和和各各门门科科学学本本身身的的发发展展使使自自然然科科学学转转向向对对运运动动的的研研究究,对对各各种种变变化化过过程程和和各各种种变变化化着着的的量量之之间间的依赖关系的研究。的依赖关系的研究。作作为为变变化化着着的的量量的的一一般般性性质质和和它它们们之之间间依依赖赖关关系系的的反反映映,在在数数学学中中产产生生了了变变量量和和函函数数的的概概念念。数数学学对对象象的的这这种种根根本本扩扩展展决决定定了了数数学学向向新新的的阶阶段段,即即向向变变量量数学时期的过渡。数
15、学时期的过渡。数数学学中中专专门门研研究究函函数数的的领领域域叫叫做做数数学学分分析析,或或者者叫叫无无穷穷小小分分析析。后后一一名名词词的的来来源源是是,因因为为无无穷穷小小量量概概念是研究函数的重要工具。念是研究函数的重要工具。所所以以,从从1717世世纪纪开开始始的的数数学学的的新新时时期期变变量量数数学时期可以定义为数学分析出现与发展的时期学时期可以定义为数学分析出现与发展的时期。变量数学建立的第一个决定性步骤出现在变量数学建立的第一个决定性步骤出现在16371637年年笛笛卡卡儿儿的的著著作作“几几何何学学”。这这本本书书奠奠定定了了解解析析几几何何的的基基础础,它它一一出出现现,变
16、变量量就就进进入入了了数数学学,从从而而运运动动进进入入了了数数学学。恩恩格格斯斯指指出出:“数数学学中中的的转转折折点点是是笛笛卡卡儿儿的的变变数数。有有了了变变数数,运运动动进进入入了了数数学学;有有了了变变数数,辩辩证证法法进进入入了了数数学学;有有了了变变数数,微微分分和和积积分分也也就就立立刻刻成成为为必必要要的的了了”(恩恩格格斯斯自自然然辩辩证证法法,人人民民出出版版社社19711971年年版版第第236236页页)。在在这这转转折折之之前前,数数学学中中占占统统治治地地位位的的是是常常量,而这之后,数学转向研究变量了。量,而这之后,数学转向研究变量了。在在“几几何何学学”里里,
17、笛笛卡卡儿儿给给出出了了字字母母符符号号的的代代数数和和解解析析几几何何原原理理,这这就就是是引引进进坐坐标标系系和和利利用用坐坐标标方方法法把把具具有有两两个个未未知知数数的的任任意意代代数数方方程程看看成成平平面面上上的的一一条条曲线曲线。解析几何给出了回答如下问题的可能:解析几何给出了回答如下问题的可能:(1)(1)通过计算来解决作图问题;通过计算来解决作图问题;(2)(2)求由某种几何性质给定的曲线的方程;求由某种几何性质给定的曲线的方程;(3)(3)利用代数方法证明新的利用代数方法证明新的几何几何定理;定理;(4)(4)反过来,从几何方面来看代数方程。反过来,从几何方面来看代数方程。
18、因因此此,解解析析几几何何是是这这样样一一个个数数学学部部门门,即即在在采采用用坐标法的同时,用代数方法研究几何对象。坐标法的同时,用代数方法研究几何对象。在在笛笛卡卡儿儿之之前前,从从古古代代起起在在数数学学中中起起优优势势作作用用的的是是几几何何学学。笛笛卡卡儿儿把把数数学学引引向向另另一一途途径径,这这就就是是使使代代数获得更重大的意义。数获得更重大的意义。变量数学发展的第二个决定性步骤是牛顿和变量数学发展的第二个决定性步骤是牛顿和莱莱布布尼尼兹兹在在1717世世纪纪后后半半叶叶建建立立了了微微积积分分。事事实实上上牛牛顿顿和和莱莱布布尼尼兹兹只只是是把把许许多多数数学学家家都都参参加加
19、过过的的巨巨大大准准备备工工作作完完成成了了,它它的的原原理理却却要要溯溯源源于于古古代代希希腊腊人人所所创创造造的的求面积和体积的方法。求面积和体积的方法。微微积积分分的的起起源源主主要要来来自自两两方方面面的的问问题题:一一是是力力学学的的一一些些新新问问题题已已知知路路程程对对时时间间的的关关系系求求速速度度,及及已已知知速速度度对对时时间间的的关关系系求求路路程程;一一是是几几何何学学的的一一些些相相当当老老的的问问题题作作曲曲线线的的切切线线和和确确定定面面积积和和体体积积等等问问题题。这这些些问问题题在在古古代代就就研研究究过过,在在1717世世纪纪初初期期开开普普勒勒、卡卡瓦瓦列
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 文化 概论 31
限制150内