磁粉检测基础知识及原理.ppt
《磁粉检测基础知识及原理.ppt》由会员分享,可在线阅读,更多相关《磁粉检测基础知识及原理.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、磁粉检测磁粉检测1 磁粉探伤基础知识磁粉探伤基础知识1.1 1.1 磁粉探伤与漏磁检测(分类方法)磁粉探伤与漏磁检测(分类方法)磁粉探伤与漏磁检测(分类方法)磁粉探伤与漏磁检测(分类方法)漏磁场探伤:是利用铁磁性材料或工件磁化后,在表面和近表面漏磁场探伤:是利用铁磁性材料或工件磁化后,在表面和近表面漏磁场探伤:是利用铁磁性材料或工件磁化后,在表面和近表面漏磁场探伤:是利用铁磁性材料或工件磁化后,在表面和近表面如有不连续性(材料的均质状态即致密性受到破坏)存在,则在不如有不连续性(材料的均质状态即致密性受到破坏)存在,则在不如有不连续性(材料的均质状态即致密性受到破坏)存在,则在不如有不连续性(
2、材料的均质状态即致密性受到破坏)存在,则在不连续性处磁力线离开工件和进入工件表面发生局部畸变产生磁极,连续性处磁力线离开工件和进入工件表面发生局部畸变产生磁极,连续性处磁力线离开工件和进入工件表面发生局部畸变产生磁极,连续性处磁力线离开工件和进入工件表面发生局部畸变产生磁极,并形成可检测的漏磁场进行探伤的方法。漏磁场探伤包括磁粉探伤并形成可检测的漏磁场进行探伤的方法。漏磁场探伤包括磁粉探伤并形成可检测的漏磁场进行探伤的方法。漏磁场探伤包括磁粉探伤并形成可检测的漏磁场进行探伤的方法。漏磁场探伤包括磁粉探伤和利用检测元件探测漏磁场。其区别在于,磁粉探伤是利用铁磁性和利用检测元件探测漏磁场。其区别在
3、于,磁粉探伤是利用铁磁性和利用检测元件探测漏磁场。其区别在于,磁粉探伤是利用铁磁性和利用检测元件探测漏磁场。其区别在于,磁粉探伤是利用铁磁性粉末磁粉,作为磁场的传感器,即利用漏磁场吸附施加在不连续粉末磁粉,作为磁场的传感器,即利用漏磁场吸附施加在不连续粉末磁粉,作为磁场的传感器,即利用漏磁场吸附施加在不连续粉末磁粉,作为磁场的传感器,即利用漏磁场吸附施加在不连续性处的磁粉聚集形成磁痕,从而显示出不连续性的位置、形状和大性处的磁粉聚集形成磁痕,从而显示出不连续性的位置、形状和大性处的磁粉聚集形成磁痕,从而显示出不连续性的位置、形状和大性处的磁粉聚集形成磁痕,从而显示出不连续性的位置、形状和大小。
4、利用检测元件探测漏磁场的磁场传感器有磁带、霍尔元件、磁小。利用检测元件探测漏磁场的磁场传感器有磁带、霍尔元件、磁小。利用检测元件探测漏磁场的磁场传感器有磁带、霍尔元件、磁小。利用检测元件探测漏磁场的磁场传感器有磁带、霍尔元件、磁敏二极管和感应线圈等。敏二极管和感应线圈等。敏二极管和感应线圈等。敏二极管和感应线圈等。利用检测元件检测漏磁场:录磁探伤法、感应线圈探伤法、利用检测元件检测漏磁场:录磁探伤法、感应线圈探伤法、霍霍尔元件检测法、磁敏二极管探测法。尔元件检测法、磁敏二极管探测法。1.2 1.2 磁粉探伤磁粉探伤磁粉探伤磁粉探伤Magnetic Particle TestingMagneti
5、c Particle Testing,简称,简称,简称,简称 MTMT基本原理是:基本原理是:铁磁性材料和工件被磁化后,由于铁磁性材料和工件被磁化后,由于铁磁性材料和工件被磁化后,由于铁磁性材料和工件被磁化后,由于不连续性的存在,使工件表面和近表不连续性的存在,使工件表面和近表不连续性的存在,使工件表面和近表不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁面的磁力线发生局部畸变而产生漏磁面的磁力线发生局部畸变而产生漏磁面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形场,吸附施加在工件表面的磁粉,形场,吸附施加在工件表面的磁粉,形场,吸附施加在工件表面的磁粉,形成
6、在合适光照下目视可见的磁痕,从成在合适光照下目视可见的磁痕,从成在合适光照下目视可见的磁痕,从成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大而显示出不连续性的位置、形状和大而显示出不连续性的位置、形状和大而显示出不连续性的位置、形状和大小。如图小。如图小。如图小。如图1 11 1所示。所示。所示。所示。磁粉探伤的适用性和局限性磁粉探伤的适用性和局限性 适用性:适用性:磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极磁粉探伤适用于检测铁磁性材料表面和近表面尺寸很小、间隙极磁粉探伤适用于检测铁磁性材料表面和近表面尺寸
7、很小、间隙极窄(如可检测出长窄(如可检测出长窄(如可检测出长窄(如可检测出长0.1mm0.1mm、宽为微米级的裂纹),目视难以看出、宽为微米级的裂纹),目视难以看出、宽为微米级的裂纹),目视难以看出、宽为微米级的裂纹),目视难以看出的不连续性。的不连续性。的不连续性。的不连续性。磁粉检测可对原材料、半成品、成品工件和在役的零部件检测探伤,磁粉检测可对原材料、半成品、成品工件和在役的零部件检测探伤,磁粉检测可对原材料、半成品、成品工件和在役的零部件检测探伤,磁粉检测可对原材料、半成品、成品工件和在役的零部件检测探伤,还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检还可对板材、型材、管材
8、、棒材、焊接件、铸钢件及锻钢件进行检还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检还可对板材、型材、管材、棒材、焊接件、铸钢件及锻钢件进行检测。测。测。测。马氏体不锈钢和沉淀硬化不锈钢具有磁性,可进行马氏体不锈钢和沉淀硬化不锈钢具有磁性,可进行马氏体不锈钢和沉淀硬化不锈钢具有磁性,可进行马氏体不锈钢和沉淀硬化不锈钢具有磁性,可进行MTMT。MTMT可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。可发现裂纹、夹杂、发纹、白点、折叠、冷隔和疏松等缺陷。磁粉检测程序磁粉检测程
9、序磁粉检测程序磁粉检测程序 磁粉检测的七个程序是:磁粉检测的七个程序是:磁粉检测的七个程序是:磁粉检测的七个程序是:(1)(1)预处理;预处理;预处理;预处理;(2)(2)磁化;磁化;磁化;磁化;(3)(3)施加磁粉或磁悬液;施加磁粉或磁悬液;施加磁粉或磁悬液;施加磁粉或磁悬液;(4)(4)磁痕的观察与记录;磁痕的观察与记录;磁痕的观察与记录;磁痕的观察与记录;(5)(5)缺陷评级;缺陷评级;缺陷评级;缺陷评级;(6)(6)退磁;退磁;退磁;退磁;(7)(7)后处理。后处理。后处理。后处理。局限性:MTMT不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊不能检测奥氏体不锈钢材料和用奥氏体不锈钢焊条焊
10、接的焊缝,也不能检测铜、铝、镁、钛等非磁性材条焊接的焊缝,也不能检测铜、铝、镁、钛等非磁性材料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面料。对于表面浅的划伤、埋藏较深的孔洞和与工件表面夹角小于夹角小于2020的分层和折叠难以发现。的分层和折叠难以发现。磁粉检测在压力容器定期检验中的重要性磁粉检测在压力容器定期检验中的重要性磁粉检测在压力容器定期检验中的重要性磁粉检测在压力容器定期检验中的重要性2 磁粉探伤的物理基础磁粉探伤的物理基础2.1 2.1 磁粉探伤中的相关物理量磁粉探伤中的相关物理量磁粉探伤中的相关物理量磁粉探伤中的相关物理量2.1.1 2.1.1 磁的基本现象磁的基本现象磁的基本
11、现象磁的基本现象磁性、磁体、磁极、磁化磁性、磁体、磁极、磁化磁性、磁体、磁极、磁化磁性、磁体、磁极、磁化磁性:磁铁能够吸引铁磁性材料的性质叫磁性。磁性:磁铁能够吸引铁磁性材料的性质叫磁性。磁性:磁铁能够吸引铁磁性材料的性质叫磁性。磁性:磁铁能够吸引铁磁性材料的性质叫磁性。磁体:凡能够吸引其他铁磁性材料的物体叫磁体。磁体:凡能够吸引其他铁磁性材料的物体叫磁体。磁体:凡能够吸引其他铁磁性材料的物体叫磁体。磁体:凡能够吸引其他铁磁性材料的物体叫磁体。磁极:靠近磁铁两端磁性特别强吸附磁粉特别多的区域称为磁极。磁极:靠近磁铁两端磁性特别强吸附磁粉特别多的区域称为磁极。磁极:靠近磁铁两端磁性特别强吸附磁粉
12、特别多的区域称为磁极。磁极:靠近磁铁两端磁性特别强吸附磁粉特别多的区域称为磁极。每一小块磁体总有两个磁极。每一小块磁体总有两个磁极。每一小块磁体总有两个磁极。每一小块磁体总有两个磁极。磁化:使原来没有磁性的物体得到磁性的过程叫磁化。磁化:使原来没有磁性的物体得到磁性的过程叫磁化。磁化:使原来没有磁性的物体得到磁性的过程叫磁化。磁化:使原来没有磁性的物体得到磁性的过程叫磁化。2.1.2 2.1.2 磁场和磁力线磁场和磁力线磁场和磁力线磁场和磁力线 磁场:具有磁性作用的空间磁场:具有磁性作用的空间磁场:具有磁性作用的空间磁场:具有磁性作用的空间磁场的特征、显示和磁力线磁场的特征、显示和磁力线磁场的
13、特征磁场的特征:是对运动的电荷(或电流)具有作用力,在磁场变化是对运动的电荷(或电流)具有作用力,在磁场变化 的同时也产生电场。的同时也产生电场。磁场的显示磁场的显示:磁场的大小、方向和分布情况,可以利用磁力线来表磁场的大小、方向和分布情况,可以利用磁力线来表 示。示。磁力线磁力线(a)马蹄形磁铁被校直成条形磁铁后)马蹄形磁铁被校直成条形磁铁后N极和极和S极的位置极的位置(b)具有机加工槽的条形磁铁产生的漏磁场)具有机加工槽的条形磁铁产生的漏磁场 (c)纵向磁化裂纹产生的漏磁场)纵向磁化裂纹产生的漏磁场 条形磁铁的磁力线分布条形磁铁的磁力线分布 磁力线在每点的切线方向代表磁场的方向,磁力线磁力
14、线在每点的切线方向代表磁场的方向,磁力线的疏密程度反映磁场的大小。的疏密程度反映磁场的大小。磁力线具有以下特性磁力线具有以下特性:磁力线是具有方向性的闭合曲线。在磁体内,磁力线是由磁力线是具有方向性的闭合曲线。在磁体内,磁力线是由磁力线是具有方向性的闭合曲线。在磁体内,磁力线是由磁力线是具有方向性的闭合曲线。在磁体内,磁力线是由S S极极极极到到到到N N极,在磁体外,磁力线是由极,在磁体外,磁力线是由极,在磁体外,磁力线是由极,在磁体外,磁力线是由N N极出发,穿过空气进入极出发,穿过空气进入极出发,穿过空气进入极出发,穿过空气进入S S极的极的极的极的闭合曲线。闭合曲线。闭合曲线。闭合曲线
15、。磁力线互不相交。磁力线互不相交。磁力线互不相交。磁力线互不相交。磁力线可描述磁场的大小和方向。磁力线可描述磁场的大小和方向。磁力线可描述磁场的大小和方向。磁力线可描述磁场的大小和方向。磁力线沿磁阻最小路径通过。磁力线沿磁阻最小路径通过。磁力线沿磁阻最小路径通过。磁力线沿磁阻最小路径通过。2.2 铁磁性材料铁磁性材料2.2.1 2.2.1 磁畴磁畴磁畴磁畴 在铁磁质中,相邻铁原子中的电子间存在着非常强的交换耦合在铁磁质中,相邻铁原子中的电子间存在着非常强的交换耦合在铁磁质中,相邻铁原子中的电子间存在着非常强的交换耦合在铁磁质中,相邻铁原子中的电子间存在着非常强的交换耦合作作作作用,这个相互作用
16、促使相邻原子中电子磁矩平行排列起来,形成一用,这个相互作用促使相邻原子中电子磁矩平行排列起来,形成一用,这个相互作用促使相邻原子中电子磁矩平行排列起来,形成一用,这个相互作用促使相邻原子中电子磁矩平行排列起来,形成一个自发磁化达到饱和状态的微小区域,这些自发磁化的微小区域,个自发磁化达到饱和状态的微小区域,这些自发磁化的微小区域,个自发磁化达到饱和状态的微小区域,这些自发磁化的微小区域,个自发磁化达到饱和状态的微小区域,这些自发磁化的微小区域,称为磁畴。称为磁畴。称为磁畴。称为磁畴。在没有外加磁场作用时,在没有外加磁场作用时,在没有外加磁场作用时,在没有外加磁场作用时,铁磁性材料内各磁畴的磁铁
17、磁性材料内各磁畴的磁铁磁性材料内各磁畴的磁铁磁性材料内各磁畴的磁矩方向相互抵消,对外显矩方向相互抵消,对外显矩方向相互抵消,对外显矩方向相互抵消,对外显示不出磁性,如下图示不出磁性,如下图示不出磁性,如下图示不出磁性,如下图a a。铁磁性材料的磁畴方向铁磁性材料的磁畴方向铁磁性材料的磁畴方向铁磁性材料的磁畴方向a a)不显示磁性;)不显示磁性;)不显示磁性;)不显示磁性;b b)磁化)磁化)磁化)磁化 c c)保留一定剩磁)保留一定剩磁)保留一定剩磁)保留一定剩磁 当把铁磁性材料放到外加磁场中去时,磁畴就会受到外加磁场的作用,一是使当把铁磁性材料放到外加磁场中去时,磁畴就会受到外加磁场的作用,
18、一是使当把铁磁性材料放到外加磁场中去时,磁畴就会受到外加磁场的作用,一是使当把铁磁性材料放到外加磁场中去时,磁畴就会受到外加磁场的作用,一是使磁畴磁矩转动,二是使畴壁发生位移,最后全部磁畴的磁矩方向转向与外加磁场磁畴磁矩转动,二是使畴壁发生位移,最后全部磁畴的磁矩方向转向与外加磁场磁畴磁矩转动,二是使畴壁发生位移,最后全部磁畴的磁矩方向转向与外加磁场磁畴磁矩转动,二是使畴壁发生位移,最后全部磁畴的磁矩方向转向与外加磁场方向一致,铁磁性材料被磁化,显示出很强的磁性。方向一致,铁磁性材料被磁化,显示出很强的磁性。方向一致,铁磁性材料被磁化,显示出很强的磁性。方向一致,铁磁性材料被磁化,显示出很强的
19、磁性。永久磁铁中的磁畴,在一个方向上占优势,因而形成永久磁铁中的磁畴,在一个方向上占优势,因而形成永久磁铁中的磁畴,在一个方向上占优势,因而形成永久磁铁中的磁畴,在一个方向上占优势,因而形成N N和和和和S S极,能显示出很强极,能显示出很强极,能显示出很强极,能显示出很强的磁性。的磁性。的磁性。的磁性。在高温情况下,磁体中分子热运动会破坏磁畴的有规则排列,使磁体的磁性在高温情况下,磁体中分子热运动会破坏磁畴的有规则排列,使磁体的磁性在高温情况下,磁体中分子热运动会破坏磁畴的有规则排列,使磁体的磁性在高温情况下,磁体中分子热运动会破坏磁畴的有规则排列,使磁体的磁性削弱。超过某一温度后,磁体的磁
20、性也就全部消失而呈现顺磁性,实现了材料的削弱。超过某一温度后,磁体的磁性也就全部消失而呈现顺磁性,实现了材料的削弱。超过某一温度后,磁体的磁性也就全部消失而呈现顺磁性,实现了材料的削弱。超过某一温度后,磁体的磁性也就全部消失而呈现顺磁性,实现了材料的退磁。铁磁性材料在此温度以上不能再被外加磁场磁化,并将失去原有的磁性的退磁。铁磁性材料在此温度以上不能再被外加磁场磁化,并将失去原有的磁性的退磁。铁磁性材料在此温度以上不能再被外加磁场磁化,并将失去原有的磁性的退磁。铁磁性材料在此温度以上不能再被外加磁场磁化,并将失去原有的磁性的临界温度称为居里点或居里温度。从居里点以上的高温冷却下来时,只要没有外
21、临界温度称为居里点或居里温度。从居里点以上的高温冷却下来时,只要没有外临界温度称为居里点或居里温度。从居里点以上的高温冷却下来时,只要没有外临界温度称为居里点或居里温度。从居里点以上的高温冷却下来时,只要没有外磁场的影响,材料仍然处于退磁状态。磁场的影响,材料仍然处于退磁状态。磁场的影响,材料仍然处于退磁状态。磁场的影响,材料仍然处于退磁状态。2.2.3 2.2.3 磁化过程磁化过程磁化过程磁化过程 (1)(1)未加外加磁场时,磁畴磁矩杂乱无章,对外不显示宏观磁性,如图未加外加磁场时,磁畴磁矩杂乱无章,对外不显示宏观磁性,如图未加外加磁场时,磁畴磁矩杂乱无章,对外不显示宏观磁性,如图未加外加磁
22、场时,磁畴磁矩杂乱无章,对外不显示宏观磁性,如图 (a)(a)(2)(2)在在在在较较较较小小小小的的的的磁磁磁磁场场场场作作作作用用用用下下下下,磁磁磁磁矩矩矩矩方方方方向向向向与与与与外外外外加加加加磁磁磁磁场场场场方方方方向向向向一一一一致致致致或或或或接接接接近近近近的的的的磁磁磁磁畴畴畴畴体体体体积积积积增增增增大大大大,而磁矩方向与外加磁场方向相反的磁畴体积减小,畴壁发生位移,如图而磁矩方向与外加磁场方向相反的磁畴体积减小,畴壁发生位移,如图而磁矩方向与外加磁场方向相反的磁畴体积减小,畴壁发生位移,如图而磁矩方向与外加磁场方向相反的磁畴体积减小,畴壁发生位移,如图 (b)(b)。(
23、3)(3)增大外加磁场时,磁矩转动畴壁继续位移,增大外加磁场时,磁矩转动畴壁继续位移,增大外加磁场时,磁矩转动畴壁继续位移,增大外加磁场时,磁矩转动畴壁继续位移,最后只剩下与外加磁场方向比较最后只剩下与外加磁场方向比较最后只剩下与外加磁场方向比较最后只剩下与外加磁场方向比较接近的磁畴,如图接近的磁畴,如图接近的磁畴,如图接近的磁畴,如图 (c)(c)。(4)(4)继续增大外加磁场,磁矩方向转动,与外加磁场方向接近,如图继续增大外加磁场,磁矩方向转动,与外加磁场方向接近,如图继续增大外加磁场,磁矩方向转动,与外加磁场方向接近,如图继续增大外加磁场,磁矩方向转动,与外加磁场方向接近,如图 (d)(
24、d)。(5)(5)当外加磁场增大到一定值时,所有磁畴的磁矩都沿外加磁场方向有序排列,当外加磁场增大到一定值时,所有磁畴的磁矩都沿外加磁场方向有序排列,当外加磁场增大到一定值时,所有磁畴的磁矩都沿外加磁场方向有序排列,当外加磁场增大到一定值时,所有磁畴的磁矩都沿外加磁场方向有序排列,达到磁化饱和,相当于一个微小磁铁或磁偶极子,产生达到磁化饱和,相当于一个微小磁铁或磁偶极子,产生达到磁化饱和,相当于一个微小磁铁或磁偶极子,产生达到磁化饱和,相当于一个微小磁铁或磁偶极子,产生N N极和极和极和极和S S极,宏观上呈现极,宏观上呈现极,宏观上呈现极,宏观上呈现磁性,如图磁性,如图磁性,如图磁性,如图
25、(e)(e)。2.5 2.5 漏磁场与磁粉检测漏磁场与磁粉检测2.5.1 2.5.1 漏磁场的形成漏磁场的形成 所谓漏磁场,就是铁磁性材料磁化后,在不连续性处或磁路的所谓漏磁场,就是铁磁性材料磁化后,在不连续性处或磁路的所谓漏磁场,就是铁磁性材料磁化后,在不连续性处或磁路的所谓漏磁场,就是铁磁性材料磁化后,在不连续性处或磁路的截面变化处,磁感应线离开和进入表面时形成的磁场。截面变化处,磁感应线离开和进入表面时形成的磁场。截面变化处,磁感应线离开和进入表面时形成的磁场。截面变化处,磁感应线离开和进入表面时形成的磁场。漏磁场形成的原因,是由于空气的磁导率远远低于铁磁性材漏磁场形成的原因,是由于空气
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 检测 基础知识 原理
限制150内