向量共线的条件.ppt
《向量共线的条件.ppt》由会员分享,可在线阅读,更多相关《向量共线的条件.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、巩巩巩巩 固固固固 练练练练 习习习习 判断下列命题是否正确判断下列命题是否正确()()(1)向量)向量 与向量与向量 平行,则向量平行,则向量 与向量与向量 方向相同方向相同或相反。或相反。(2)向量)向量 与向量与向量 是共线向量则是共线向量则A、B、C、D四点必在四点必在一条直线上。一条直线上。CABMN证明:证明:M、N分别是分别是 AB、AC边上的中点边上的中点例题讲解(一)例题讲解(一)例例1、如图所示,、如图所示,、是是 的中位线。求证:的中位线。求证:,且且 例题讲解(二)例题讲解(二)例例2、已知已知 试问向量试问向量 与向量与向量 是否平行是否平行并求并求 解:由解:由 得
2、得 ,代入,代入 得得 因此,因此,与与 平行且平行且轴上向量坐标运算轴上向量坐标运算轴上向量坐标运算轴上向量坐标运算 轴的概念轴的概念 规定了方向和长度单位的直规定了方向和长度单位的直 线叫做轴线叫做轴已知轴已知轴 取单位向量取单位向量 ,使使 的方向与的方向与 同方向,根据平行同方向,根据平行的条件,对于轴的条件,对于轴 上任意向量上任意向量 一定存在唯一数一定存在唯一数 ,使,使反过来,任意给定一个实数反过来,任意给定一个实数 ,我们总能作一个向量,我们总能作一个向量 ,使它的长度等于这个实数使它的长度等于这个实数 的绝对值,方向与实数的绝对值,方向与实数的符号一致。的符号一致。轴和数轴
3、轴和数轴 的区别的区别想想一一想想当 与 同方向时,是正 数当 与 反方向时,是负数 给定一向量给定一向量 能生成与它平行的所有向量的集合能生成与它平行的所有向量的集合 这里的向量这里的向量 叫做轴叫做轴 的基向量。的基向量。叫做叫做 在在 上的上的坐标(或数量)坐标(或数量)(其中(其中 )轴上两个向量相等的条件是他们的坐标相等;轴上两个向量相等的条件是他们的坐标相等;轴上两个向量和的坐标等于两个向量的坐标的和。轴上两个向量和的坐标等于两个向量的坐标的和。设设 于是于是 ,得,得 如果如果 则则 反之,如果反之,如果 ,则,则 OABC设设 是轴是轴 上的一个基向量上的一个基向量,显然,显然
4、,与与 绝对值相同,绝对值相同,符号相反,即符号相反,即因为因为 所以所以Ox 设设 向量向量 平行于平行于 轴,以原点轴,以原点 为始点作为始点作 则点则点 的位置被向量的位置被向量 所唯一确定,由平行向量基本所唯一确定,由平行向量基本定理知,存在唯一的实数定理知,存在唯一的实数 使使 ,数值,数值 是点是点 的位置向量在的位置向量在 轴上的坐标,也就是点轴上的坐标,也就是点 在在 轴上的坐标。轴上的坐标。Px在数轴在数轴 上,已知点上,已知点 的坐标为的坐标为 ,点,点 的坐标的坐标为为 即即数轴上两点距离公式数轴上两点距离公式为为oA30BP于是得到于是得到 例题讲解三例题讲解三 例例3
5、、已知数轴上三点已知数轴上三点A、B、C的坐标分别是的坐标分别是4、-2、-6,求求 的坐标和长度。的坐标和长度。O4-2-6解:解:基础知识形成性练习基础知识形成性练习1、把下列向量、把下列向量 表示为数乘向量表示为数乘向量 的形式的形式(1)(2)(3)(4)得得(1)由由(2)由由得得(3)由由得得(4)由由得得答案:答案:2、已知:在、已知:在 中,中,求证求证:,并且,并且 因为因为 所以所以 AMNCB3、在数轴上,已知、在数轴上,已知 求求(1)(2)(3)(4)(1)(1)AB+BC=AC AC=3+5=8 AB+BC=AC AC=3+5=8 (2)(2)AC=AB+BC=5+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量 共线 条件
限制150内