文科数学11回归分析的基本思想及其初步应用 (2).ppt
《文科数学11回归分析的基本思想及其初步应用 (2).ppt》由会员分享,可在线阅读,更多相关《文科数学11回归分析的基本思想及其初步应用 (2).ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、文科数学文科数学11回回归分析分析的基本思想及其初步的基本思想及其初步应用用必修必修3(3(第二章第二章 统计统计)知识结构知识结构 收集数据收集数据 (随机抽样随机抽样)整理、分析数据估整理、分析数据估计、推断计、推断简简单单随随机机抽抽样样分分层层抽抽样样系系统统抽抽样样用样本估计总体用样本估计总体变量间的相关关系变量间的相关关系 用样本用样本的频率的频率分布估分布估计总体计总体分布分布 用样本用样本数字特数字特征估计征估计总体数总体数字特征字特征线线性性回回归归分分析析1、两个变量的关系、两个变量的关系不相关不相关相关关相关关系系函数关系函数关系线性相关线性相关非线性相关非线性相关现实生
2、活中两个变量间的关系有哪些呢?现实生活中两个变量间的关系有哪些呢?相关关系:相关关系:对于两个变量,当自变量取值一定时,对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关因变量的取值带有一定随机性的两个变量之间的关系。系。思考:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况2、最小二乘估计、最小二乘估计(使得样本数据的点到回归直线的距离的使得样本数据的点到回归直线的距离的 平方和最小的方法叫最小二乘法平方和最小的方法叫最小二乘法)最小二乘估计
3、下的线性回归方程:最小二乘估计下的线性回归方程:回归直线必过样本点的中心回归直线必过样本点的中心线性回归方程线性回归方程 中,中,的意义是的意义是x每增加每增加一个单位,一个单位,y就平均增加就平均增加 个单位个单位C3、回归分析的基本步骤回归分析的基本步骤:画散点图画散点图求回归方程求回归方程预报、决策预报、决策这种方法称为这种方法称为回归分析回归分析.回归分析回归分析是对具有相关关系的两个变量进行统计是对具有相关关系的两个变量进行统计 分析的一种常用方法分析的一种常用方法.回归分析知识结构图回归分析知识结构图问题背景分析问题背景分析线性回归模型线性回归模型两个变量线性相关两个变量线性相关最
4、小二乘法最小二乘法两个变量非线性相关两个变量非线性相关非线性回归模型非线性回归模型残差分析残差分析散点图散点图应用应用注:虚线表示高中阶段不涉及的关系注:虚线表示高中阶段不涉及的关系 比数学3中“回归”增加的内容数学数学统计统计1.画散点图画散点图2.了解最小二乘法的了解最小二乘法的思想思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程解用回归直线方程解决应用问题决应用问题选修1-2统计案例5.引入线性回归模型引入线性回归模型6.了解模型中随机误差项了解模型中随机误差项e产生产生的原因的原因7.了解相关指数了解相关指数 R2 和模型拟合和模型拟合的效果之间的关系的效果之间的关系8.
5、了解残差图的作用了解残差图的作用9.利用线性回归模型解决一类非利用线性回归模型解决一类非线性回归问题线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果选修1-2统计案例5.引入线性回归模型引入线性回归模型6.了解模型中随机误差项了解模型中随机误差项e产生产生的原因的原因7.了解相关指数了解相关指数 R2 和模型拟合和模型拟合的效果之间的关系的效果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回归模型解决一类非利用线性回归模型解决一类非线性回归问题线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果例题:例题:某设备的使用年限和所支出的维修费用(万元)某设备的使
6、用年限和所支出的维修费用(万元)如下表:如下表:(1)求根据使用年限预报维修费用的回归方程,)求根据使用年限预报维修费用的回归方程,并预报使用年限为并预报使用年限为10年时,维修费用的多少;年时,维修费用的多少;(2)求残差、残差平方和,并进行残差分析;)求残差、残差平方和,并进行残差分析;(3)求相关指数)求相关指数R,并说明回归模型拟合效果的好坏,并说明回归模型拟合效果的好坏.解:(解:(1)选取使用年限为自变量选取使用年限为自变量x,维修费用为因变量,维修费用为因变量y,作散点图,作散点图(2)残差表如下)残差表如下 由残差表中的数据可看出第三和第五个样本点的残差比由残差表中的数据可看出
7、第三和第五个样本点的残差比较大,需确认在采集这两个数据时是否有人为的错误,若有,较大,需确认在采集这两个数据时是否有人为的错误,若有,需纠正数据重新建立回归模型;由表中数据可看出需纠正数据重新建立回归模型;由表中数据可看出残差点比残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适较均匀地落在水平的带状区域中,说明选用的模型计较合适.由以上分析可知,使用年限与维修费用成线性关系由以上分析可知,使用年限与维修费用成线性关系.所以回归模型的拟合效果很好所以回归模型的拟合效果很好例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-
8、1所示。所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据女大学生的身高预报她的体重的回归方程,并求根据女大学生的身高预报她的体重的回归方程,并预报一名身高为预报一名身高为172cm的女大学生的体重。的女大学生的体重。解:选取身高为自变量解:选取身高为自变量x,体重为因变量,体重为因变量y,作散点图:,作散点图:探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:答:用这个回归方程不能给出每个身高为用这个回归方程不能给出每个身高为 172cm的女大学生的体重的预测值,
9、只能给出她们平均体重的女大学生的体重的预测值,只能给出她们平均体重的估计值。的估计值。由于所有的样本点不共线,而只是散布在由于所有的样本点不共线,而只是散布在某一直线的附近,所以身高和体重的关系某一直线的附近,所以身高和体重的关系可以用可以用线性回归模型线性回归模型来表示:来表示:其中其中a和和b为模型的未知参数,为模型的未知参数,e称为称为随机误差随机误差.函数模型与函数模型与“回归模型回归模型”的关系的关系函数模型:函数模型:因变量因变量y完全由自变量完全由自变量x确定确定回归模型:回归模型:预报变量预报变量y完全由解释变量完全由解释变量x和随机误差和随机误差e确定确定注:注:e 产生的主
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 文科数学11回归分析的基本思想及其初步应用 2 文科 数学 11 回归 分析 基本 思想 及其 初步 应用
限制150内