电磁场的基本规律.ppt
《电磁场的基本规律.ppt》由会员分享,可在线阅读,更多相关《电磁场的基本规律.ppt(121页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1电磁学有三大实验定律:电磁学有三大实验定律:库仑定律库仑定律 安培定律安培定律 法拉弟电磁感应定律法拉弟电磁感应定律以以此此为为基基础础,麦麦克克斯斯韦韦进进行行了了归归纳纳总总结结,建建立立了了描描述述宏宏观观电电磁磁现现象象的的规规律律麦麦克克斯斯韦韦方方程程组组2 2.1 电荷守恒定律电荷守恒定律2.2 真空中静电场的基本规律真空中静电场的基本规律2.3 真空中恒定磁场的基本规律真空中恒定磁场的基本规律2.4 媒质的电磁特性媒质的电磁特性2.5 电磁感应定律和位移电流电磁感应定律和位移电流2.6 麦克斯韦方程组麦克斯韦方程组2.7 电磁场的边界条件电磁场的边界条件本章讨论内容本章讨论
2、内容32.1 电荷守恒定律电荷守恒定律本节讨论的内容本节讨论的内容:电荷模型、电流模型、电荷守恒定律电荷模型、电流模型、电荷守恒定律 电磁场物理模型中的基本物理量可分为源量和场量两大类。电磁场物理模型中的基本物理量可分为源量和场量两大类。电荷电荷电流电流电场电场磁场磁场(运动)(运动)源源量量为为电电荷荷 和和电电流流 ,分分别别用用来来描描述述产产生生电电磁磁效效应应的的两类场源。电荷是产生电场的源,电流是产生磁场的源。两类场源。电荷是产生电场的源,电流是产生磁场的源。4 电荷是物质基本属性之一。电荷是物质基本属性之一。1897年年英英国国科科学学家家汤汤姆姆逊逊(J.J.Thomson)在
3、在实实验验中中发发现现了了电子。电子。1907 1913年年间间,美美国国科科学学家家密密立立根根(R.A.Miliken)通通过过油滴实验,精确测定电子电荷的量值为油滴实验,精确测定电子电荷的量值为 e=1.602 177 3310-19 (单位:单位:C)确确认认了了电电荷荷的的量量子子化化概概念念。换换句句话话说说,e 是是最最小小的的电电荷荷,而而任任何带电粒子所带电荷都是何带电粒子所带电荷都是e 的整数倍。的整数倍。宏宏观观分分析析时时,电电荷荷常常是是数数以以亿亿计计的的电电子子电电荷荷e的的集集合合,故故可不考虑其量子化的事实,而认为电荷量可不考虑其量子化的事实,而认为电荷量q可
4、任意连续取值。可任意连续取值。2.1.1 电荷与电荷密度电荷与电荷密度51.电荷体密度电荷体密度 单位:单位:C/m3(库库/米米3)根据电荷密度的定义,如果已知根据电荷密度的定义,如果已知某空间区域某空间区域V 中的电荷体密度,则区中的电荷体密度,则区域域V 中的总电荷中的总电荷q为为 电荷连续分布于体积电荷连续分布于体积V 内,用电荷体密度来描述其分布内,用电荷体密度来描述其分布 理想化实际带电系统的电荷分布形态分为四种形式:理想化实际带电系统的电荷分布形态分为四种形式:点点电电荷、体分布荷、体分布电电荷、荷、面分布面分布电电荷、荷、线线分布分布电电荷荷6 若电荷分布在薄层上若电荷分布在薄
5、层上,当仅考虑薄层外、距薄层的距离要当仅考虑薄层外、距薄层的距离要比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。面分布的场时,可将该薄层的厚度忽略,认为电荷是面分布。面分布的电荷可用电荷面密度表示电荷可用电荷面密度表示。2.电荷面密度电荷面密度单位单位:C/m2(库库/米米2)如果已知某空间曲面如果已知某空间曲面S 上的电荷上的电荷面密度,则该曲面上的总电荷面密度,则该曲面上的总电荷q 为为7 若电荷分布在细线上,若电荷分布在细线上,当仅考虑细线外、距细线的距离要当仅考虑细线外、距细线的
6、距离要比细线的直径大得多处的电场,而不分析和计算线内的电场时,比细线的直径大得多处的电场,而不分析和计算线内的电场时,可将线的直径忽略,认为电荷是线分布。可将线的直径忽略,认为电荷是线分布。线分布的电荷可用电线分布的电荷可用电荷线密度表示。荷线密度表示。3.电荷线密度电荷线密度 如果已知某空间曲线上的电荷线如果已知某空间曲线上的电荷线密度,则该曲线上的总电荷密度,则该曲线上的总电荷q 为为 单位单位:C/m(库库/米米)8 对于总电荷为对于总电荷为 q 的电荷集中在很小区域的电荷集中在很小区域 V 的情况,当不分的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算析和计算该电荷
7、所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中的电荷可看作位于该区域中心、电荷为中心、电荷为 q 的点电荷。的点电荷。点电荷的电荷密度表示点电荷的电荷密度表示4.点电荷点电荷92.1.2 电流与电流密度电流与电流密度说明说明:电流通常是时间的函数,不随时间变化的电流称为电流通常是时间的函数,不随时间变化的电流称为恒定恒定 电流电流,用,用I 表示。表示。存在可以自由移动的电荷存在可以自由移动的电荷 存在电场
8、存在电场单位单位:A(安)(安)电流方向电流方向:正电荷的流动方向正电荷的流动方向电流电流 电荷的定向运动而形成,用电荷的定向运动而形成,用i 表示,其大小定义为:表示,其大小定义为:单位时间内通过某一横截面单位时间内通过某一横截面S 的电荷量,即的电荷量,即形成电流的条件形成电流的条件:10 电荷在某一体积内定向运动所形电荷在某一体积内定向运动所形成的电流称为体电流,用成的电流称为体电流,用电流密度矢电流密度矢量量 来描述。来描述。单位单位:A/m2(安(安/米米2)。一般情况下,在空间不同的点,电流的大小和方向往往是不一般情况下,在空间不同的点,电流的大小和方向往往是不同的。在电磁理论中,
9、常用同的。在电磁理论中,常用体电流体电流、面电流面电流和和线电流线电流来描述电流来描述电流的分别状态。的分别状态。1.体电流体电流 流过任意曲面流过任意曲面S 的电流为的电流为体电流密度矢量体电流密度矢量正电荷运动的方向正电荷运动的方向112.面电流面电流 电荷在一个厚度可以忽略的电荷在一个厚度可以忽略的薄层内定向运动所形成的电流称薄层内定向运动所形成的电流称为面电流,用面电流密度矢量为面电流,用面电流密度矢量 来来描述其分布描述其分布面电流密度矢量面电流密度矢量d 0单位:单位:A/m(安(安/米)米)。通过薄导体层上任意有向曲线通过薄导体层上任意有向曲线 的电流为的电流为正电荷运动的方向正
10、电荷运动的方向12 Js是是反反映映薄薄层层中中各各点点电电流流流流动动情情况况的的物物理理量量,它它形形成成一一个个空空间矢量场分布间矢量场分布 Js在某点的方向为该点电流流动的方向在某点的方向为该点电流流动的方向 Js在某点的大小为单位时间内垂直通过单位长度的电量在某点的大小为单位时间内垂直通过单位长度的电量 当薄层的厚度趋于零时,面电流称为理想面电流当薄层的厚度趋于零时,面电流称为理想面电流 只有当电流密度只有当电流密度J趋于无穷,面电流密度趋于无穷,面电流密度Js才不为零,即才不为零,即关于面电流密度的说明关于面电流密度的说明 线电流密度线电流密度 当电流沿一横截面可以忽略的曲线流动,
11、电流被称为线电当电流沿一横截面可以忽略的曲线流动,电流被称为线电流。长度元流。长度元dl上的电流上的电流Idl称为电流元。称为电流元。132.1.3 电荷守恒定律(电流连续性方程)电荷守恒定律(电流连续性方程)电荷守恒定律电荷守恒定律:电荷既不能被创造,也不能被消灭,只能从物体电荷既不能被创造,也不能被消灭,只能从物体 的一部分转移到另一部分,或者从一个物体转移的一部分转移到另一部分,或者从一个物体转移 到另一个物体。到另一个物体。电流连续性方程电流连续性方程积分形式积分形式微分形式微分形式流出闭曲面流出闭曲面S 的电流的电流等于体积等于体积V 内单位时内单位时间所减少的电荷量间所减少的电荷量
12、恒定电流的连续性方程恒定电流的连续性方程恒定电流是无源场,电恒定电流是无源场,电流线是连续的闭合曲线,流线是连续的闭合曲线,既无起点也无终点既无起点也无终点电荷守恒定律是电磁现象中的基本定律之一。电荷守恒定律是电磁现象中的基本定律之一。14例例1 1:一个半径为一个半径为a a的球体内均匀分布总电荷量为的球体内均匀分布总电荷量为Q Q的电的电荷,球体以均匀角速度荷,球体以均匀角速度 绕一直径旋转。绕一直径旋转。求:球内的电流密度求:球内的电流密度 。解:解:建立球面坐标系。建立球面坐标系。例例1 1:解:解:建立球面坐标系。建立球面坐标系。15 例例2 在在球球面面坐坐标标系系中中,传传导导电
13、电流流密密度度为为J=er10r-1.5(A/m),求求:(1)通通过过半半径径r1mm的的球球面面的的电电流流值值;(2)在在半半径径r=1mm的的球球面面上上电电荷荷密密度度的的增增加加率率;(3)在在半半径径r=1mm的的球球体内总电荷的增加率。体内总电荷的增加率。解:解:(1)(2)在球面坐标系中)在球面坐标系中(3)由电荷守恒定律得)由电荷守恒定律得162.2 真空中静电场的基本规律真空中静电场的基本规律1.库仑库仑(Coulomb)定律定律(1785年年)2.2.1 库仑定律库仑定律 电场强度电场强度静电场静电场:由静止电荷产生的电场。由静止电荷产生的电场。重要特征重要特征:对位于
14、电场中的电荷有电场力作用。对位于电场中的电荷有电场力作用。真空中静止点电荷真空中静止点电荷 q1 对对 q2 的作用力的作用力:,满足牛顿第三定律。,满足牛顿第三定律。大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;方向沿方向沿q1 和和q2 连线方向,同性电荷相排斥,异性电荷相吸引;连线方向,同性电荷相排斥,异性电荷相吸引;17 多个电荷对一个电荷的静电力是各电荷力的多个电荷对一个电荷的静电力是各电荷力的矢量叠加矢量叠加,即,即 连续分布电荷系统的静电力必须进行矢量积分连续分布电荷系统的静电力必须进行矢量积分 只给出了作用力的大小和
15、方向,没有说明传递方式或途径只给出了作用力的大小和方向,没有说明传递方式或途径对库仑定律的进一步讨论对库仑定律的进一步讨论 大小与电量成正比、与距离的平方成反比,方向在连线上大小与电量成正比、与距离的平方成反比,方向在连线上18电场力服从叠加定理电场力服从叠加定理 真空中的真空中的N个点电荷个点电荷 (分别位于(分别位于 )对点电荷对点电荷 (位于(位于 )的作用力为)的作用力为qq1q2q3q4q5q6q7192.电场强度电场强度 空间某点的电场强度定义为置于该点的单位点电荷(又称空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即试验电荷)受到的作用力,即如果电荷是
16、连续分布呢?如果电荷是连续分布呢?根据上述定义,真空中静止点根据上述定义,真空中静止点电荷电荷q 激发的电场为激发的电场为 描述电场分布的基本物理量描述电场分布的基本物理量 电场强度矢量电场强度矢量试验正电荷试验正电荷 20小体积元中的电荷产生的电场小体积元中的电荷产生的电场面密度为面密度为 的面的面分布电荷的电场强度分布电荷的电场强度线密度为线密度为 的线的线分布电荷的电场强度分布电荷的电场强度体密度为体密度为 的体分布电荷产生的电场强度的体分布电荷产生的电场强度21对电场强度的进一步讨论对电场强度的进一步讨论 电场强度形成矢量场分布,各点相同时,称为均匀电场电场强度形成矢量场分布,各点相同
17、时,称为均匀电场 电电场场强强度度是是单单位位点点电电荷荷受受到到的的电电场场力力,它它只只与与产产生生电电场场的的电电荷有关荷有关 此式对静电场和时变电场均成立此式对静电场和时变电场均成立 点电荷产生的电场点电荷产生的电场单个点电荷在空间任意点激发的电场为单个点电荷在空间任意点激发的电场为 N个点电荷组成的电荷系统在空间任意点激发的电场为个点电荷组成的电荷系统在空间任意点激发的电场为223.几种典型几种典型电电荷分布的荷分布的电场电场强强度度(无限长)(无限长)(有限长)(有限长)均匀带电圆环均匀带电圆环均匀带电直线段均匀带电直线段均匀带电直线段的电场强度均匀带电直线段的电场强度:均匀带电圆
18、环轴线上的电场强度:均匀带电圆环轴线上的电场强度:23电偶极矩电偶极矩+q电偶极子电偶极子zolq电偶极子的场图电偶极子的场图等位线等位线电场线电场线 电偶极子是由相距很近、带等值异号的两个点电荷组成的电偶极子是由相距很近、带等值异号的两个点电荷组成的电荷系统,其远区电场强度为电荷系统,其远区电场强度为 电偶极子的电场强度:电偶极子的电场强度:24 例例 2.2.1 计算均匀带电的环形薄圆盘轴线上任意点的电场强计算均匀带电的环形薄圆盘轴线上任意点的电场强度。度。解解:如图所示,环形薄圆盘的内半径为如图所示,环形薄圆盘的内半径为a、外半径为、外半径为b,电荷,电荷面密度为面密度为 。在环形薄圆盘
19、上取面积元在环形薄圆盘上取面积元 ,其位置矢量为其位置矢量为 ,它所带的电量为它所带的电量为 。而薄圆盘轴线上的场点而薄圆盘轴线上的场点 的位置的位置矢量为矢量为 ,因此有,因此有P(0,0,z)brRyzx均匀均匀带电带电的的环环形薄形薄圆盘圆盘dSa故故由于由于252.2.2 静电场的散度与旋度静电场的散度与旋度 高斯定理表明高斯定理表明:静电场是有源场,电力线起始于正电荷,终止静电场是有源场,电力线起始于正电荷,终止 于负电荷。于负电荷。静电场的散度静电场的散度(微分形式)(微分形式)1.静电场散度与高斯定理静电场散度与高斯定理静电场的高斯定理静电场的高斯定理(积分形式)(积分形式)环路
20、定理表明环路定理表明:静电场是无旋场,是保守场,电场力做功与路径静电场是无旋场,是保守场,电场力做功与路径 无关。无关。静电场的旋度静电场的旋度(微分形式)(微分形式)2.静电场旋度与环路定理静电场旋度与环路定理静电场的环路定理静电场的环路定理(积分形式)(积分形式)26对环路定理的讨论对环路定理的讨论 空空间间中中静静电电场场旋旋度度处处处处为为零零,静静电电场场中中不不存存在在旋旋涡涡源源,电电力线不构成闭合回路力线不构成闭合回路 静电场沿任意闭合回路的积分都为零静电场沿任意闭合回路的积分都为零 电电场场旋旋度度和和电电场场强强度度是是不不同同的的两两个个物物理理量量,从从不不同同角角度度
21、描描述同一个物理对象述同一个物理对象 虽虽然然空空间间中中电电场场的的旋旋度度处处处处为为零零,但但电电场场却却可可能能存存在在,二二者没有必然的联系者没有必然的联系 27 在电场分布具有一定对称性的情况下,可以利用高斯定理计在电场分布具有一定对称性的情况下,可以利用高斯定理计算电场强度。算电场强度。3.利用高斯定理计算电场强度利用高斯定理计算电场强度具有以下几种对称性的场可用高斯定理求解:具有以下几种对称性的场可用高斯定理求解:球对称分布球对称分布:包括均匀带电的球面,球体和多层同心球壳等。:包括均匀带电的球面,球体和多层同心球壳等。均匀带电球体均匀带电球体带电球壳带电球壳多层同心球壳多层同
22、心球壳28 无限大平面电荷无限大平面电荷:如无限大的均匀带电平面、平板等。:如无限大的均匀带电平面、平板等。轴对称分布轴对称分布:如无限长均匀带电的直线,圆柱面,圆柱壳等。:如无限长均匀带电的直线,圆柱面,圆柱壳等。(a a)(b b)29 例例2.2.2 求真空中均匀带电球体的场强分布。已知球体半径求真空中均匀带电球体的场强分布。已知球体半径为为a,电,电 荷密度为荷密度为 0。解解:(1)球外某点的场强球外某点的场强(2)求球体内一点的场强)求球体内一点的场强ar0rrEa(r r a a)(r a 时,因时,因 ,故,故由于由于 ,所以,所以 在圆环的中心点上,在圆环的中心点上,z=0,
23、磁感应强度最大,即,磁感应强度最大,即402.3.2 恒定磁场的散度和旋度恒定磁场的散度和旋度 1.1.恒定磁场的散度与磁通连续性原理恒定磁场的散度与磁通连续性原理磁通连续性原理磁通连续性原理表明表明:恒定磁场是无源场,磁感应线是无起点和恒定磁场是无源场,磁感应线是无起点和 终点的闭合曲线。终点的闭合曲线。恒定场的散度恒定场的散度(微分形式)(微分形式)磁通连续性原理磁通连续性原理(积分形式)(积分形式)安培环路定理表明安培环路定理表明:恒定磁场是有旋场,是非保守场、电流是磁恒定磁场是有旋场,是非保守场、电流是磁 场的旋涡源。场的旋涡源。恒定磁场的旋度恒定磁场的旋度(微分形式)(微分形式)2.
24、恒定磁场的旋度与安培环路定理恒定磁场的旋度与安培环路定理安培环路定理安培环路定理(积分形式)(积分形式)41 恒定磁场的性质恒定磁场的性质 无源(无散)场。磁力线无头无尾且不相交无源(无散)场。磁力线无头无尾且不相交 有旋场。电流是磁场的旋涡源有旋场。电流是磁场的旋涡源,磁力线构成闭合回路,磁力线构成闭合回路对安培环路定理的讨论对安培环路定理的讨论 空间任意点磁场的旋度空间任意点磁场的旋度只与只与当地的电流密度有关当地的电流密度有关 恒恒定定电电流流是是静静磁磁场场的的旋旋涡涡源源,电电流流激激发发旋旋涡涡状状的的静静磁磁场场,并决定旋涡源的强度和旋涡方向并决定旋涡源的强度和旋涡方向 磁磁场场
25、旋旋度度与与磁磁场场是是不不同同的的物物理理量量,它它们们的的取取值值没没有有必必然然联联系。没有电流的地方,磁场旋度为零,但磁场不一定为零系。没有电流的地方,磁场旋度为零,但磁场不一定为零 任任意意回回路路上上恒恒定定磁磁场场的的回回路路积积分分,等等于于穿穿过过回回路路所所围围区区域域的总电流强度的总电流强度42 解解:分析场的分布,取安培环路如图分析场的分布,取安培环路如图 根据对称性,有根据对称性,有 ,故,故 在磁场分布具有一定对称性的情况下,可以利用安培环路在磁场分布具有一定对称性的情况下,可以利用安培环路定理计算磁感应强度。定理计算磁感应强度。3.利用安培环路定理计算磁感应强度利
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 基本 规律
限制150内