12全等三角形复习.ppt
《12全等三角形复习.ppt》由会员分享,可在线阅读,更多相关《12全等三角形复习.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全等三角形的性质全等三角形的性质:全等三角形的判定全等三角形的判定知识回顾知识回顾一般三角形全等的判定:一般三角形全等的判定:SAS、ASA、AAS、SSS直角三角形全等的判定:直角三角形全等的判定:SAS、ASA、AAS、SSS、HL全等图形全等图形:能完全重合的图形叫全等图形能完全重合的图形叫全等图形全等三角形全等三角形:能完全重合的三角形是全等三角形能完全重合的三角形是全等三角形.一个三角形经过哪些变化可以得到它的全等形?一个三角形经过哪些变化可以得到它的全等形?(1)全等三角形的对应边、对应角相等全等三角形的对应边、对应角相等.(2)全等三角形的周长相等、面积相等全等三角形的周长相等、
2、面积相等.(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。)全等三角形的对应边上的对应中线、角平分线、高线分别相等。一个三角形经过平移、翻折、旋转可以得到它的全等形。一个三角形经过平移、翻折、旋转可以得到它的全等形。回顾知识点:回顾知识点:边边边:边边边:三边对应相等的两个三角形全等(三边对应相等的两个三角形全等(可简写成可简写成“SSSSSS”)边角边边角边:两边两边和和它们的夹角它们的夹角对应对应相等两个三角形全等(相等两个三角形全等(可可简写成简写成“SAS”)角边角角边角:两角和它们的夹边两角和它们的夹边对应对应相等的两个三角形全等相等的两个三角形全等(可简写成可简写成“
3、ASA”)角角边角角边:两角和其中一角的对边两角和其中一角的对边对应对应相等的两个三角形全相等的两个三角形全等(等(可简写成可简写成“AAS”)斜边斜边.直角边:直角边:斜边和一条直角边斜边和一条直角边对应对应相等的两个直角三相等的两个直角三角形全等(可简写成角形全等(可简写成“HLHL”)三边对应相等的两个三角形全等(可以简写三边对应相等的两个三角形全等(可以简写为为“边边边边边边”或或“SSS”)。)。ABCDEF在在ABC和和 DEF中中 ABC DEF(SSS)AB=DEBC=EFCA=FD用符号语言表达为:用符号语言表达为:用符号语言表达为:用符号语言表达为:三角形全等判定方法三角形
4、全等判定方法1 、全等三角形的判定方法、全等三角形的判定方法 三角形全等判定方法三角形全等判定方法2用符号语言表达为:用符号语言表达为:用符号语言表达为:用符号语言表达为:在在ABC与与DEF中中ABCDEF(SAS)两边和它们的夹角对应相等的两个三角形全两边和它们的夹角对应相等的两个三角形全等。等。(可以简写成可以简写成“边角边边角边”或或“SASSAS”)FEDCBAAC=DFC=FBC=EFA=DAB=DEB=E在在ABC和和DEF中中 ABCDEF(ASA)有两角和它们夹边对应相等的两个三角形全有两角和它们夹边对应相等的两个三角形全有两角和它们夹边对应相等的两个三角形全有两角和它们夹边
5、对应相等的两个三角形全等等等等(可以简写成可以简写成可以简写成可以简写成“角边角角边角角边角角边角”或或或或“ASAASA”)。)。)。)。用符号语言表达为:用符号语言表达为:用符号语言表达为:用符号语言表达为:FEDCBA 三角形全等判定方法三角形全等判定方法3 三角形全等判定方法三角形全等判定方法4 有两角和其中一个角的对边对应相等的两个三有两角和其中一个角的对边对应相等的两个三有两角和其中一个角的对边对应相等的两个三有两角和其中一个角的对边对应相等的两个三角形全等角形全等角形全等角形全等(可以简写成可以简写成可以简写成可以简写成“角角边角角边角角边角角边”或或或或“AASAAS”)。)。
6、)。)。在在ABC和和DEF中中A=DB=E BC=EF ABCDEF(AAS)三角形全等判定方法三角形全等判定方法5 有一条有一条有一条有一条斜边斜边斜边斜边和一条和一条和一条和一条直角边直角边直角边直角边对应相等的两个对应相等的两个对应相等的两个对应相等的两个直角直角直角直角三角形三角形三角形三角形全等全等全等全等(HLHL)。)。)。)。在在RtABC和和RtDEF中中AB=DE(已知(已知)AC=DF(已知(已知)ABCDEF(HL)ABCDEF方法指引方法指引证明两个三角形全等的基本思路:证明两个三角形全等的基本思路:(1):已知两边):已知两边-找第三边找第三边(SSS)找夹角找夹
7、角(SAS)(2):已知一边一角已知一边一角-已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角(HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角(AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)(3):已知两角已知两角-找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任意边(AAS)注意:、注意:、“分别对应相等分别对应相等”是关键;是关键;、已知两边及其中一边的对角分别对应相等的两个三角形不一定全等。、已知两边及其中一边的对角分别
8、对应相等的两个三角形不一定全等。3、经过平移、翻折、旋转等变换得到的三角形和原三角形全等。、经过平移、翻折、旋转等变换得到的三角形和原三角形全等。4、三角形全等是证明线段相等,角相等的重要途径。、三角形全等是证明线段相等,角相等的重要途径。全等三角形,是证明两条全等三角形,是证明两条线段线段或两个或两个角角相等的重相等的重要方法之一,证明时要方法之一,证明时 要观察待证的线段或角,在哪两个可能全等的三要观察待证的线段或角,在哪两个可能全等的三角形中。角形中。分析分析要证两个三角形全等,已有什么条件,还缺要证两个三角形全等,已有什么条件,还缺什么条件。什么条件。有有公共边公共边的,的,公共边公共
9、边一般是对应边,一般是对应边,有有公共角公共角的,的,公共角公共角一般是对应角,有一般是对应角,有对顶角对顶角,对顶角对顶角一般是对应一般是对应角角注意:有些题可能要证明多次全等或者进行一些必要的注意:有些题可能要证明多次全等或者进行一些必要的 等价转化等价转化 归纳:归纳:全等三角形的进一步应用全等三角形的进一步应用总结提高总结提高学习全等三角形应注意以下几个问题:学习全等三角形应注意以下几个问题:(1):1):要正确区分要正确区分“对应边对应边”与与“对边对边”,“对应对应角角”与与 “对角对角”的不同含义;的不同含义;(2 2):表示两个三角形全等时,表示对应顶点的字):表示两个三角形全
10、等时,表示对应顶点的字母要写在对应的位置上;母要写在对应的位置上;(3 3):要记住):要记住“有三个角对应相等有三个角对应相等”或或“有两边及有两边及其中一边的对角对应相等其中一边的对角对应相等”的两个三角形不一定全等;的两个三角形不一定全等;(4 4):时刻注意图形中的隐含条件,如):时刻注意图形中的隐含条件,如 “公共角公共角”、“公共边公共边”、“对顶角对顶角”找全等三角形对应边和对应角的方法:找全等三角形对应边和对应角的方法:1、从长短大小、从长短大小两个全等三角形的一对最长边(最大角)是两个全等三角形的一对最长边(最大角)是对应边(角);一对最短边(最小角)是对对应边(角);一对最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12 全等 三角形 复习
限制150内