2023届高考数学专项练习极值点偏移一题30问含答案.pdf





《2023届高考数学专项练习极值点偏移一题30问含答案.pdf》由会员分享,可在线阅读,更多相关《2023届高考数学专项练习极值点偏移一题30问含答案.pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、导 数 30 问导 数 30 问已知函数f(x)=lnxx ,若f(x)=a有两个不同的零点x已知函数f(x)=lnxx ,若f(x)=a有两个不同的零点x1 1,x,x2 2,且x,且x1 1x0)g【解析】令g(x)=lnx-ax(aR,x0)g(x)=1x-a(x0,aR)若a0,则g(x)=1x-a(x0,aR)若a0,则g(x)0恒成立,g(x)在(0,+)上单调递增,此时g(x)不可能有两个零点;若a0,则当x(0,1a)时,g(x)0恒成立,g(x)在(0,+)上单调递增,此时g(x)不可能有两个零点;若a0,则当x(0,1a)时,g(x)0,g(x)单调递增,当x(1a,+)时
2、,g(x)0,g(x)单调递增,当x(1a,+)时,g(x)0,g(x)单调递减;当x=1a时,g(x)取得最大值,且 g(x)(x)0即0a1e时,g(1)=-a0 x(0,+),lnx0即0a1e时,g(1)=-a0 x(0,+),lnxxlnx=2ln x 2 x2 x g(x)2 x g(x)2 x-ax=a x-ax=a x(2a-x(2a-x)g(4a)g(4a2 2)a2a(2a-2a)=0 x)a2a(2a-2a)=0 x1 1(1,e),x(1,e),x2 2(1a,4a(1a,4a2 2),g(x),g(x1 1)=g(x)=g(x2 2)=0,此时g(x)有两个零点,符合
3、题意综上所述,a的取值范围是0a1e,且1x)=0,此时g(x)有两个零点,符合题意综上所述,a的取值范围是0a1e,且1x1 1e1axe1a2a2a【解析】f(x)=a有两个不同的零点x【解析】f(x)=a有两个不同的零点x1 1,x,x2 2,则有a0且0a0且0a2 2x x1 1+x x2 2,由对均不等式易证由对均不等式易证:x x1 1+x x2 22 2a a3.求证求证:x x1 1+x x2 22e2e【解析】【解析】0 0a ae e,由由(1 1)得得x x1 1+x x2 22 2a a2e2e,x x1 1+x x2 22e2e4.求证求证:x x1 1+x x2
4、22 2a a【解析】【解析】lnlnx x1 1-axax1 1=lnlnx x2 2-axax2 2,a a(x x2 2-x x1 1)=()=(lnlnx x2 2-lnlnx x1 1)=)=lnlnx x2 2x x1 1=2ln2lnx x2 2x x1 14 4x x2 2x x1 1-1 1 x x2 2x x1 1+1 1=4 4x x2 2-x x1 1 x x2 2+x x1 1a a(x x2 2-x x1 1)()(x x2 2+x x1 1)4 4(x x2 2-x x1 1)x x2 2+x x1 1整理得整理得x x1 1+x x2 22 2a a5.求证求证
5、:1 1x x1 1+1 1x x2 22 2a a【解析】【解析】a a(x x2 2-x x1 1)=()=(lnlnx x2 2-lnlnx x1 1)=)=lnlnx x2 2x x1 12 2a a6.求证求证:e e2 2x x1 1x x2 2(反向对均不等式反向对均不等式).【解析】【解析】e e2 22 2,f f x x1 1 =a af f x x2 2 =a a lnlnx x1 1x x1 1=a alnlnx x2 2x x2 2=a a lnlnx x1 1-axax1 1=0 0lnlnx x2 2-axax2 2=0 0 lnlnx x1 1=axax1 1l
6、nlnx x2 2=axax2 2 即证即证a a(x x1 1+x x2 2)2 2,即证即证x x1 1+x x2 22 2a a,由由(2 2)知成立知成立7.求证求证:x x1 1x x2 21 1a a2 2(反向对均不等式反向对均不等式).【解析】【解析】x x1 1x x2 2x x1 1x x2 2,x x2 2-x x1 1a a(x x2 2-x x1 1)x x1 1x x2 2,x x1 1x x2 21 1a a得证得证8.求证求证:3 3a a-e ex x1 1+x x2 2.【解析】法一:因为【解析】法一:因为x x2 2-x x1 1lnlnx x2 2-ln
7、lnx x1 1x x1 1+x x2 22 2,令令x x1 1=e e得得x x2 2-e eaxax2 2-1 10 0,令令x x2 2=e e得得e e-x x1 11 1-axax1 10 0,+得得:a a(x x2 22 2-x x2 21 1)+()+(aeae-3 3)x x2 2-(-(aeae-3 3)x x1 10 0整理得整理得a a(x x1 1+x x2 2)()(x x2 2-x x1 1)()(aeae-3 3)()(x x1 1-x x2 2),),x x1 1+x x2 23 3-aeaea a法二法二:证明证明:左边左边:0 0 x x1 1e ex
8、x2 2,axax1 1=lnlnx x1 1=lnlnx x1 1e e+1 12 2(x x1 1e e-1 1)x x1 1e e+1 1+1 1 axax2 21 1+(+(aeae-3 3)x x1 1+e e0 0,-得得x x1 1+x x2 23 3-aeaea a.右边同法一右边同法一9.求证:求证:x x1 1+x x2 2-2ln2lna aa a【解析】要证【解析】要证x x1 1+x x2 2-2ln2lna aa a,lnlnx x1 1=axax1 1lnlnx x2 2=axax2 2 要证要证lnlnx x1 1+lnlnx x2 2a a-2ln2lna a
9、a a,即证即证lnlnx x1 1x x2 21 1nana-2 2,即证即证x x1 1x x2 21 1-lnlna aa a【解析】【解析】x x1 1+x x2 21 1-lnlna aa a=1 1a a-lnlna aa a ,x x2 2-x x1 1lnlnx x2 2-lnlnx x1 1x x1 1+x x2 22 2,先令先令x x1 1=1 1a a,x x2 2-1 1a aaxax2 2+lnlna ax x2 2+1 1a a2 2,再令再令x x2 2=1 1a a,1 1a a-x x1 1-lnlna a-axax1 10 0,-axax2 21 1-(-
10、(lnlna a-1 1)x x1 1-lnlna aa a -2 2a a0 0,+得得:x x1 1+x x2 21 1-lnlna aa a.11.求证求证:lnlnx x1 1+lnlnx x2 21 1-lnlna a.【解析】【解析】lnlnx x1 1=axax1 1lnlnx x2 2=axax axax1 1+axax2 21 1-lnlna a,x x1 1+x x2 21 1-lnlna aa a由由(7 7)得证得证.12.求证求证:x x1 1x x2 2e ea a【解析】【解析】x x1 1x x2 2e ea a,即证即证lnlnx x1 1x x2 2lnln
11、e ea a.即即lnlnx x1 1+lnlnx x2 21 1-lnlna a,由由(8 8)得证得证.13.求证:求证:1 1x x1 1+1 1x x2 22 2e e【解析】法一:要证【解析】法一:要证1 1x x1 1+1 1x x2 22 2e e,令令1 1x x1 1=t t1 1,1 1x x2 2=t t2 2,由题意得由题意得lnlnx x1 1=axax1 1,lnlnx x2 2=axax2 2,代入则有代入则有lnln1 1t t1 1=a a1 1t t1 1,lnln1 1t t2 2=a a1 1t t2 2即即0 0=lnlnt t1 1+a at t1
12、1,0 0=lnlnt t2 2+a at t2 2,两式作差有两式作差有lnlnt t2 2-IntInt1 1-a at t1 1+a at t2 2=0 0,lnlnt t2 2-lnlnt t1 1t t2 2-t t1 1=a at t1 1t t2 21 1t t1 1t t2 2,a a1 1e e2 2 t t1 1+t t2 22 2 t t1 1t t2 22 2e e,即,即1 1x x1 1+1 1x x2 22 2e e法二:另解法二:另解:令令t t=1 1x x,则则t t1 1=1 1x x1 1,t t2 2=1 1x x2 2,有有0 0t t1 11 1e
13、 et t2 21 1(t t1 1t t2 22 2e e;由题意由题意lnlnt t1 1=-a at t1 1,lnlnt t2 2=x x1 1t t2 2,lnlnt t1 1-lnlnt t2 2=-=-a a(1 1t t1 1-1 1t t2 2)=)=a at t1 1-t t2 2t t1 1+t t2 2,即即lnlnt t1 1t t2 2=a at t1 1-t t2 2t t1 1+t t2 2;lnlnt t1 1+lnlnt t2 2=-=-a at t1 1+t t2 2t t1 1 t t2 2;lnln(t t1 1t t2 2)lnlnt t1 1t t
14、2 2=-=-t t1 1+t t2 2t t1 1-t t2 2即即lnln(t t1 1t t2 2)=-)=-t t2 2t t2 2+1 1t t1 1t t1 1-1 1 lnlnt t1 1t t2 2,又又lnlnt t1 1t t2 22 2(t t1 1-1 1t t2 2 -1 1)t t1 1t t2 2+1 1(0 0t t1 1t t2 21 1)lnln(t t1 1t t2 2)-)-2 2 t t1 1t t2 22 2 t t1 1t t2 2即即t t1 1+t t2 22 2e e,得证得证.14.求证:求证:2ln2lnx x1 1+lnlnx x2 2
15、e e【解析】易知【解析】易知x x2 2-x x1 1lnlnx x2 2-lnlnx x1 1=1 1a a,要证,要证2ln2lnx x1 1+lnlnx x2 2e e,即证即证2ln2lnx x1 1+lnlnx x2 2e e a a x x2 2-x x1 1 lnlnx x2 2-lnlnx x1 1,即即2 2axax1 1+axax2 2aeaex x2 2-x x1 1lnlnx x2 2-lnlnx x1 1,即证,即证2 2x x1 1+x x2 2e ex x2 2-x x1 1lnlnx x2 2-lnlnx x1 1,令令x x2 2x x1 1=t t(1 1
16、,+),+),即只需证,即只需证lnlnt te e(t t-1 1)t t+2 2.令令g g(x x)=)=lnlnx x-3 3 x x2 2-1 1 x x2 2+4 4x x+1 1(x x1 1),g g(x x)=)=(x x-1 1)4 4x x x x2 2+4 4x x+1 1 2 20 0,g g(x x)在在(1 1,+),+)单调递增,单调递增,g g(x x)g g(1 1)=)=0 0,lnlnt t-e e(t t-1 1)t t+2 23 3 t t2 2-1 1 t t2 2+4 4t t+1 1-e e(t t-1 1)t t+2 2=t t-1 1t t
17、2 2+4 4t t+1 1 (t t+2 2)(3 3-e e)t t2 2+(+(9 9-4e4e)t t+6 6-e e 0 0 原式得证原式得证.15.求证:求证:1 1lnlnx x1 1+1 1lnlnx x2 22 2aeae【解析】要证【解析】要证1 1lnlnx x1 1+1 1lnlnx x2 22 2aeae,证,证1 1x x1 1+1 1x x2 22 2a a2 2e e,由,由(4 4)得得1 1x x1 1+1 1x x2 22 2a a,又又aeae(0 0,1 1)故故1 1x x1 1+1 1x x2 22 2a a2 2e e,原式得证,原式得证.16.
18、求证:求证:x x1 1+1 1 x x2 2+1 1 3 3a a2 2-2 2a a+1 1【解析】要证【解析】要证 x x1 1+1 1 x x2 2+1 1 3 3a a2 2-2 2a a+1 1即证即证x x1 1+x x2 2+x x1 1x x2 23 3a a2 2-2 2a a,由由(7 7)知知x x1 1x x2 21 1a a2 2,由,由(9 9)知知x x1 1+x x2 2-2ln2lna aa a,-2ln2lna aa a1 1-1 1x x(x x1 1)-)-lnlnx x-1 1+1 1x x(x x1 1)-)-lnlna a-1 1+1 1a a(
19、a a1 1)得得-2ln2lna aa a2 2a a2 2-2 2a a,由,由+得得x x1 1+x x2 2+x x1 1x x2 22e2ea a2 2【解析】由【解析】由(2 2)知知x x1 1+x x2 22 2a a;由;由(1212)知知x x1 1x x2 2e ea a,则有则有x x2 21 1x x2 2+x x2 22 2x x1 1=x x1 1x x2 2x x1 1+x x2 2 2e2ea a2 218.求证:求证:x x1 1x x2 2aeae【解析】由题可知【解析】由题可知a a=lnlnx xx x ,易知,易知a a 0 0,1 1e e ,0
20、0 x x1 1e ex x2 2法一:由题可知法一:由题可知x x1 1x x2 2aeaelnlnx x1 1-lnlnx x2 2lnlna a+1 1a a x x1 1-x x2 2 lnlna a+1 1x x1 1-x x2 21 1a a+lnlna aa a 易知易知x x1 1-lnlna aa a ,x x1 1-x x2 21 1a a+lnlna aa a 法二:由题可得法二:由题可得x x1 1x x2 2aeae=lnlnx x2 2x x2 2 e ex x1 1e elnlnx x2 2,由由0 0 x x1 1e ee ex x1 1,满足满足.19.求证求
21、证:x x1 11 1-1 1-aeaea a【解析】法一:因为【解析】法一:因为x x1 1,x x2 2是是lnlnx x=axax的两个根的两个根,且且1 1x x1 1e ex x2 2,且且lnlnx x1 1=axax1 1lnlnx x2 2=axax2 2 只涉及到变量只涉及到变量x x1 1,故只用故只用lnlnx x1 1=axax1 1 a a=lnlnx x1 1x x1 1,要证要证x x1 11 1-axax axax2 21 1-2 2x x1 1+e e0 0 x x1 1lnlnx x1 1-2 2x x1 1+e e0 0,构造函数构造函数h h(x x)=
22、)=x xlnlnx x-2 2x x+e e,x x(1 1,e e),),则则h h(x x)=)=lnlnx x-1 10 0,h h(x x)在在(1 1,e e)上递减上递减,h h(x x)=)=h h(e e)=)=0 0,原不等式成立原不等式成立.法二法二:因为因为x xlnlnx xx x-1 1当且仅当当且仅当x x=1 1时等号成立时等号成立.x xe elnlnx xe ex xe e-1 1,当且仅当当且仅当x xe e=1 1时等号成立,时等号成立,即即x x(lnlnx x-1 1)x x-e e当且仅当当且仅当x x=e e时等号成立时等号成立,即即x xlnl
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 高考 数学 专项 练习 极值 偏移 30 答案

限制150内