第九章--差错控制编码.ppt
《第九章--差错控制编码.ppt》由会员分享,可在线阅读,更多相关《第九章--差错控制编码.ppt(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九章第九章 差错控制编码差错控制编码这章讲述的内容这章讲述的内容l 差错控制编码的概念差错控制编码的概念l 汉明码汉明码l 线性分组码线性分组码l 循环码循环码l 卷积码卷积码9.1 引言引言 数字信号在传输中,遇噪声和干扰,在收端判决时可能会判数字信号在传输中,遇噪声和干扰,在收端判决时可能会判错。减小误码率的措施有错。减小误码率的措施有:l 合理选择调制方式合理选择调制方式信号正交信号正交,合适的系统带宽合适的系统带宽,信道因素信道因素;l 增大发送信号功率;增大发送信号功率;l 改善传输特性;改善传输特性;l 合理选择接收方式相干、非相干、最佳合理选择接收方式相干、非相干、最佳l 差错
2、控制编码差错控制编码l 优良的同步系统优良的同步系统(准确的同步准确的同步)差错控制编码方式差错控制编码方式(有针对性有针对性)汉明码、循环码汉明码、循环码加性高斯白噪声。误码的出现是分散的。加性高斯白噪声。误码的出现是分散的。卷积码、循环码卷积码、循环码脉冲噪声;衰落。误码的出现是集中的。脉冲噪声;衰落。误码的出现是集中的。差错控制方法差错控制方法1.反馈检验法:收端收到码组后,反馈回发端,与原发码组比反馈检验法:收端收到码组后,反馈回发端,与原发码组比较确认。传输效率低;双向信道;设备技术简单。较确认。传输效率低;双向信道;设备技术简单。2.检错重发法检错重发法:收端收到码组后,检查出错误
3、后,要求重法。收端收到码组后,检查出错误后,要求重法。只需很少的监督元;检错编码对信道适应能强;只需很少的监督元;检错编码对信道适应能强;双向信道;双向信道;不能用于实时传输;信道噪声大时,出现不能用于实时传输;信道噪声大时,出现“重发循环重发循环”。3.例如:例如:信信源源信道编码信道编码及缓冲存及缓冲存储器储器双双向向信信道道信道译码信道译码指令发生器指令发生器发送控制发送控制输出缓冲输出缓冲存储器存储器NYN“重发重发”N自动请求重发系统自动请求重发系统ARQ(Automatic Repeat reQuest)3.前向纠错法:收端收到码组后,能检查出错码的位置,自前向纠错法:收端收到码组
4、后,能检查出错码的位置,自 动纠错。单向信道;实时传输;监督元位数多动纠错。单向信道;实时传输;监督元位数多,影响传输影响传输 效率;设备技术复杂。效率;设备技术复杂。4.混合法:检纠结合。噪声大错码多按检错重发工作,噪声混合法:检纠结合。噪声大错码多按检错重发工作,噪声 小错码少按前向纠错工作。小错码少按前向纠错工作。后三种方法,需接收端自动检查错误或自动纠正错误。后三种方法,需接收端自动检查错误或自动纠正错误。怎样的编码怎样的编码(算法算法),能实现这些功能?,能实现这些功能?9.2 基本原理基本原理1.例如:用例如:用“0”、“1”传输天气预报信传输天气预报信号。号。晴晴“0”阴阴“1”
5、因噪声传输出错因噪声传输出错“1/0”阴阴“0/1”晴晴如用如用2位二进码位二进码“00”、“11”传输以上天气预报信号传输以上天气预报信号一般把一般把“00”,“11”称为许用码组,而称为许用码组,而“01”、“10”称为禁称为禁用码组。用码组。把原信息位后附加的码元称为监督位。把原信息位后附加的码元称为监督位。晴晴“00”阴阴“11”因噪声传输出错因噪声传输出错“10/00”“10/11”“01/11”“01/00”可检错,但可检错,但不知哪位错不知哪位错“11/00”“00/11”不可检错误不可检错误(超超出检错范围出检错范围)如用如用3位二进码位二进码“000”、“111”传输以上天气
6、预报信号传输以上天气预报信号晴晴“000”(阴阴“111”)出错出错“100/000”;“010/000”;“001/000”仅错仅错2位可检错,但不知哪位错。位可检错,但不知哪位错。“111/000”不可检错误不可检错误(超出检错范围超出检错范围)“101/000”;“011/000”;“110/000”仅错仅错1位的概率最大,自动纠位的概率最大,自动纠1位错码。位错码。差错控制编码码组差错控制编码码组(系统码系统码)构成构成信息位信息位 监督位监督位监督元与信息元监督元与信息元 满足线性方程称为线性码。满足线性方程称为线性码。监督元只监督本码组的信息元称为线性分组码监督元只监督本码组的信息
7、元称为线性分组码(汉明码汉明码;循环码循环码)。监督元除监督本码组的信息元还监督前监督元除监督本码组的信息元还监督前(N-1)个码组的信息元,个码组的信息元,称为线性非分组码称为线性非分组码(卷积码卷积码)。2.分组码分组码(1).线性分组码定义线性分组码定义k位信息元位信息元r位监督元位监督元码组长度码组长度nk+rr/n 称为多余度(冗余度)。越大纠、检能力越强。称为多余度(冗余度)。越大纠、检能力越强。k/n 称为编码效率。越大纠、检能力越弱。称为编码效率。越大纠、检能力越弱。用(用(n,k)表示线性分组码。)表示线性分组码。(2).码重码重W、码距、码距d、以及最小码距、以及最小码距d
8、0码重码重W:分组码中:分组码中“1”码的位数。码的位数。(11010100),W=4。码距码距d:分组码中两个码组对应位取不同值的位数。即两码:分组码中两个码组对应位取不同值的位数。即两码 组模组模2加所得码组的码重。加所得码组的码重。(1 1 1 1 0 1 1 0)(1 1 0 1 0 1 0 0)(0 0 1 0 0 0 1 0)d=6最小码距最小码距d0:l 某种编码生成的码组集合中,各个码组间距离的最小值。某种编码生成的码组集合中,各个码组间距离的最小值。l 线性分组码具有线性分组码具有封闭性封闭性(码组集合中任意两个码组模码组集合中任意两个码组模2和和 所得码组仍为该集合中的码组
9、所得码组仍为该集合中的码组)。所以。所以码组集合中,码组码组集合中,码组 的最小重量就等于最小码距。全零码除外。的最小重量就等于最小码距。全零码除外。l 最小码距最小码距d0,直接关系到检错、纠错的能力。直接关系到检错、纠错的能力。d0 越大检越大检 错、纠错的能力越强。错、纠错的能力越强。(3).最小码距最小码距d0与纠检能力的关系:与纠检能力的关系:当许用码组集合当许用码组集合M一定,一定,d0 一定,一定,只检只检 个以下个以下(含含 个个)的错码的错码,要求要求或或或或只纠只纠 个以下个以下(含含 个个)的错码的错码,要求要求既检既检 个又纠个又纠 个错码,要求个错码,要求A、B码组为
10、许用码集合中码距为码组为许用码集合中码距为d0 的的(但不唯一但不唯一)。禁用码组都落在检错圆上。禁用码组都落在检错圆上。许用码组都落在检错圆外。但码距大于等于许用码组都落在检错圆外。但码距大于等于d0。只检方式只检方式ABd0检错圆检错圆0123A、B码组为许用码集合中码距为码组为许用码集合中码距为d0 的,的,(但不唯一但不唯一)。禁用码组都落在纠错圆上。禁用码组都落在纠错圆上。许用码组都落在纠错圆外。但码距大于等于许用码组都落在纠错圆外。但码距大于等于d0。纠错园上的码组都纠为圆心上的码组。纠错园上的码组都纠为圆心上的码组。Ad0B012345纠错圆纠错圆只纠方式只纠方式AB1t检、纠结
11、合方式检、纠结合方式纠错圆纠错圆检错圆检错圆d0如前例如前例 晴晴阴阴d02只检一位错不能纠错只检一位错不能纠错晴晴阴阴d03只检方式,能检只检方式,能检2位错位错只纠方式,能纠只纠方式,能纠1位错位错不能检纠结合不能检纠结合晴晴阴阴多云多云雨雨d01无检纠能力无检纠能力3.差错控制编码的效果差错控制编码的效果 如果误码率为如果误码率为P103,在码长为,在码长为n7的码组中,恰好的码组中,恰好发生发生r个错码的概率为个错码的概率为能纠能纠1位错,出错的概率由位错,出错的概率由103降为降为105。能纠能纠2位错,出错的概率由位错,出错的概率由103降为降为109。9.3 常用的简单编码常用的
12、简单编码an-1an-2 a2a1a001.偶监督码偶监督码(an-1,an-2 a2,a1,a0)奇数个奇数个1 a0 1 偶数个偶数个1 a0 0信息位信息位监督位监督位接收校验接收校验:an-1an-2 a2a1a001码组中码组中1码个数为偶数码个数为偶数“无错或无奇数个错无错或无奇数个错”“有奇数个错有奇数个错”模模2加加检错能力:能检奇数个错码。检错能力:能检奇数个错码。an-1an-2 a2a1a012.奇监督码奇监督码(an-1,an-2 a2,a1,a0)奇数个奇数个1 a0 0 偶数个偶数个1 a0 1信息位信息位监督位监督位接收校验接收校验:an-1an-2 a2a1a0
13、10码组中码组中1码个数为奇数码个数为奇数“无错或无奇数个错无错或无奇数个错”“有奇数个错有奇数个错”检错能力:能检奇数个错码。检错能力:能检奇数个错码。3.2维奇偶监督码维奇偶监督码(块奇偶监督码)块奇偶监督码)多个码组构成方阵多个码组构成方阵对方阵的行、列方对方阵的行、列方向都进行奇或偶监向都进行奇或偶监督码的编码。督码的编码。能检奇数个错;能检奇数个错;可能检偶数个错可能检偶数个错(但错码构成矩形形状错不可检但错码构成矩形形状错不可检);适合检突发错误。适合检突发错误。9.4 线性分组码线性分组码an-1an-2a0k位信息元位信息元r位监督元位监督元线性方程组线性方程组一一.汉明码汉明
14、码 纠一个分组中的纠一个分组中的1位错码位错码 t1,d0=3偶监督码是最简单的偶监督码是最简单的线性分组(线性分组(n,n-1),一个监督元。一个监督元。如偶监督码如偶监督码an-1an-2 a1a0=S01无错无错(极大的概率极大的概率)有错有错S称为校正子称为校正子(伴随式伴随式)。一个校正子只有两个状态,可表示。一个校正子只有两个状态,可表示有错与无错两个信息,而不能指出错码的位置。有错与无错两个信息,而不能指出错码的位置。监督关系式监督关系式如果增加一位监督元,如果增加一位监督元,a1、a0,增加一个监督关系式,增加一个监督关系式监督关系为监督关系为a1与与an-1,an-2 a2中
15、部分码元构成监督关系中部分码元构成监督关系a0与与an-1,an-2 a2中部分码元构成监督关系中部分码元构成监督关系an-1an-2 a1=S1an-1an-2 a0=S2两个校正子,能表示两个校正子,能表示4种信息。种信息。设想设想r个监督元,个监督元,r个监督式,个监督式,r个校正子,个校正子,(S1 S2 Sr)2r种状态种状态全零无错全零无错2r 1n表示表示n位码组中位码组中1位错码的位错码的n个位置。个位置。线性无关线性无关所以,一般码长为所以,一般码长为n,信息位数为,信息位数为k,监督位数,监督位数rnk。如果希望用如果希望用r个监督位构造出个监督位构造出r个监督关系式来指示
16、一位个监督关系式来指示一位错码的错码的n种可能位置,则要求种可能位置,则要求(S1 S2 Sr)0 0 0 10 0 1 00 0 1 1 1 1 1 1an-1,an-2 a2,a1,a0对于(对于(7,4)汉明码,)汉明码,r3,满足,满足2317。能纠能纠7位中的位中的1位错码位错码。3个监督位构造出个监督位构造出3个监督关系个监督关系a2与与a6 a5 a4构成偶监督关系构成偶监督关系a1与与a6 a5 a3构成偶监督关系构成偶监督关系a0与与a6 a4 a3构成偶监督关系构成偶监督关系a6+a5+a4+a2=0或或S1a6+a5+a3+a1=0或或S2a6+a4+a3+a0=0或或S
17、3S1S2S3错码位置错码位置S1S2S3错码位置错码位置001a0101a4010a1110a5100a2111a6011a3000仅无仅无1位错位错得得出出关关系系(线性无关线性无关)a6+a5+a4+a2=0a6+a5+a3+a1=0a6+a4+a3+a0=04 比特信息元比特信息元 a6、a5、a4、a3确定后,根据监督关系式确定后,根据监督关系式求出求出 3 比特监督元比特监督元 a2、a1、a0。a2=a6+a5+a4a1=a6+a5+a3a0=a6+a4+a3监督关系式也可以表示成监督关系式也可以表示成1a2=1a6+1a5+1a4+0a31a1=1a6+1a5+0a4+1a31
18、a0=1a6+0a5+1a4+1a3码元系数为码元系数为1的表示码元之间存在监督关系,的表示码元之间存在监督关系,0则没有则没有(7,4)汉明码编码汉明码编码用矩阵表示用矩阵表示监督关系式还可以用矩阵表示监督关系式还可以用矩阵表示或或a2 a1 a0=a6 a5 a4 a31 1 1 1 1 0 1 0 1 0 1 1=P1 1 1 0 1 1 0 1 1 0 1 1a6a5a4a3a2a1a0a6a5a4a3=a6 a5 a4 a3QPT13134414113144314监督序列监督序列生成矩阵生成矩阵a2 a1 a0=a6 a5 a4 a31 1 1 1 1 0 1 0 1 0 1 1 1
19、 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1a6 a5 a4 a3=I42131443a6 a5 a4 a3 a2 a1 a01 0 0 0 0 1 0 0 0 0 1 0 0 0 0 11 1 1 1 1 0 1 0 1 0 1 1 a6 a5 a4 a3144717G47a6 a5 a4 a3 a2 a1 a01 0 0 0 0 1 0 0 0 0 1 0 0 0 0 11 1 1 1 1 0 1 0 1 0 1 1 a6 a5 a4 a3I4Q信息元矩阵信息元矩阵G典型生成矩阵典型生成矩阵A汉明码汉明码(系统码系统码)矩阵矩阵144717 Aa6 a5 a4 a314G4
20、7G47将信息元将信息元a6 a5 a4 a3,共共2k个不同的信息序列,分别代入方个不同的信息序列,分别代入方程组,得到程组,得到a6 a5 a4 a3 a2 a1 a0共共2k个许用码组。见下表。个许用码组。见下表。(7,4)汉明码,汉明码,d0=3,许用码组集合。,许用码组集合。为生成矩阵。为生成矩阵。A许用码组许用码组A许用码组许用码组信息位信息位监督位监督位信息位信息位监督位监督位a6a5a4a3a2a1a0a6a5a4a3a2a1a0000000010001110001011100110000101011010010001111010110010100110110000101011
21、011101010011001111101000111000111111112341234结论结论1:(7,4)汉明码属汉明码属(n,k)线性分组码之一。线性分组码之一。编码方法为编码方法为A许用码组许用码组系统码系统码a6a5a4a3K位信息位位信息位IkQkrG典型生成阵典型生成阵 典型生成矩阵典型生成矩阵G,左半部分为,左半部分为k阶单位阵阶单位阵Ik,右半部分右半部分为监督序列生成矩阵为监督序列生成矩阵Q 。kr G的各行线性无关。的各行线性无关。G的各行也在许用码组集合中。的各行也在许用码组集合中。监督关系监督关系Q不同时,构成的不同时,构成的(n,k)线性分组码不同。线性分组码不同
22、。(7,4)汉明码译码汉明码译码1a2=1a6+1a5+1a4+0a31a1=1a6+1a5+0a4+1a31a0=1a6+0a5+1a4+1a31a6+1a5+1a4+0a3+1a2+0a1+0a0=01a6+1a5+0a4+1a3+0a1+1a1+0a0=01a6+0a5+1a4+1a3+0a2+0a1+1a0=0a6a5a4a3a2a1a01 1 1 0 1 0 01 1 0 1 0 1 01 0 1 1 0 0 137=0007131IrPH一致监督矩阵一致监督矩阵AT0T全零校正子全零校正子监督关系式监督关系式a6a5a4a3a2a1a01 1 1 0 1 0 01 1 0 1 0
23、1 01 0 1 1 0 0 137=0007131IrPH0TATH或或0AHT377131137317 一致监督矩阵一致监督矩阵 H 。左边部分为监督序列生成矩阵。左边部分为监督序列生成矩阵 P ,右边部分为右边部分为r阶单位阵阶单位阵Ir。rnrn H 各行线性无关。各行也在许用码组集合中。各行线性无关。各行也在许用码组集合中。H 给定后信息位和监督位的关系就完全确定。给定后信息位和监督位的关系就完全确定。“1”码的位置码的位置表示相应码元之间存在着监督关系。表示相应码元之间存在着监督关系。结论结论2:一致监督矩阵一致监督矩阵 H 。左边部分为监督序列生成矩阵。左边部分为监督序列生成矩阵
24、 P ,右边部分为右边部分为r阶单位阵阶单位阵Ir。rkrn H 各行线性无关。各行线性无关。H 给定后信息位和监督位的关系就完全确定。给定后信息位和监督位的关系就完全确定。“1”码的码的位位置表示相应码元之间存在着监督关系。置表示相应码元之间存在着监督关系。如果接收码组如果接收码组B等于发送码组等于发送码组A,全零校正子表示无错。此种信道译码方式称为全零校正子表示无错。此种信道译码方式称为校正子检验校正子检验。0AHT1rnr1nBHT1n伴随式检验伴随式检验校正子检验校正子检验检错原理:如果接收码组为检错原理:如果接收码组为B(用矩阵表示用矩阵表示),有,有B =A,无错,则,无错,则 B
25、HT=0,校正子,校正子 S 0 检验无错码。检验无错码。B A,有错,则,有错,则 BHT 0,校正子,校正子 S 0 检验有错码。检验有错码。纠错原理:如果纠错原理:如果B A,而,而B AE,或或BA+EE en-1en-2e1e01n称为错误图样行矩阵。称为错误图样行矩阵。ei0 bi =ai1 bi ai无错无错有错有错E中中1元素元素(1码)的位置就是错码的位置。的位置就是错码的位置。根据校正子检验根据校正子检验B HT =(A+E)HT =A HT+E HT E HT S1nnr1nnrnr1n1n1nnrnr 校正子矩阵校正子矩阵S1r=1nnrE HT =HT或或ST =H
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九 差错 控制 编码
限制150内