2022初中数学中考知识点归纳总结_初中数学中考知识点.docx
《2022初中数学中考知识点归纳总结_初中数学中考知识点.docx》由会员分享,可在线阅读,更多相关《2022初中数学中考知识点归纳总结_初中数学中考知识点.docx(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022初中数学中考知识点归纳总结_初中数学中考知识点 初中数学中考学问点归纳总结由我整理,希望给你工作、学习、生活带来便利,猜你可能喜爱“初中数学中考学问点”。 初中数学中考学问点归纳总结 1、一元一次方程根的状况 =b2-4ac 当0时,一元二次方程有2个不相等的实数根; 当=0时,一元二次方程有2个相同的实数根; 当 2、平行四边形的性质: 两组对边分别平行的四边形叫做平行四边形。 平行四边形不相邻的两个顶点连成的线段叫他的对角线。 平行四边形的对边/对角相等。 平行四边形的对角线相互平分。 菱形:一组邻边相等的平行四边形是菱形 领心的四条边相等,两条对角线相互垂直平分,每一组对角线平分
2、一组对角。 判定条件:定义/对角线相互垂直的平行四边形/四条边都相等的四边形。 矩形与正方形: 有一个内角是直角的平行四边形叫做矩形。 矩形的对角线相等,四个角都是直角。 对角线相等的平行四边形是矩形。 正方形具有平行四边形,矩形,菱形的一切性质。 一组邻边相等的矩形是正方形。 多边形: N边形的内角和等于(N-2)180度 多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2XN,我们把(X1+X2+XN)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数
3、据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的全部线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、假如两条直线都和 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相
4、交,那么交点在对称轴上 45、逆定理 假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理 假如三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理 四边形的内角和等于360 49、四边形的外角和等于360 50、多边形内角和定理 n边形的内角的和等于(n-2)180 51、推论 随意多边的外角和等于360 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论 夹在两条
5、平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线相互平分 56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理3 对角线相互平分的四边形是平行四边形 59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 6 1、矩形性质定理2 矩形的对角线相等 62、矩形判定定理1 有三个角是直角的四边形是矩形 6 3、矩形判定定理2 对角线相等的平行四边形是矩形 6 4、菱形性质定理1 菱形的四条边都相等 65、菱形性质定理2
6、 菱形的对角线相互垂直,并且每一条对角线平分一组对角 6 6、菱形面积=对角线乘积的一半,即S=(ab)2 6 7、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线相互垂直的平行四边形是菱形 6 9、正方形性质定理1 正方形的四个角都是直角,四条边都相等 70、正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角 7 1、定理1 关于中心对称的两个图形是全等的 72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理 假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 7
7、 4、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 7 5、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 7 7、对角线相等的梯形是等腰梯形 7 8、平行线等分线段定理 假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 7 9、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80、推论2 经过三角形一边的中点与另一边平行的直线,必平分 10 8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 10 9、定理 不在同始终线上的三点确定一个圆。 110、垂径定理 垂直于弦的直径平分这条弦并
8、且平分弦所对的两条弧 1 11、推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 1 12、推论2 圆的两条平行弦所夹的弧相等 1 13、圆是以圆心为对称中心的中心对称图形 1 14、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 1 15、推论 在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 1 16、定理 一条弧所对的圆周角等于它所对的圆心角的一半 1 17、推论1 同
9、弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 1 18、推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 1 19、推论3 假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 1 21、直线L和O相交 dr 直线L和O相切 d=r 直线L和O相离 dr 1 22、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 1 23、切线的性质定理 圆的切线垂直于经过切点的半径 1 24、推论1 经过圆心且垂直于切线的直线必经过切点 1 25、推论2 经过切点且
10、垂直于切线的直线必经过圆心 1 26、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 1 27、圆的外切四边形的两组对边的和相等 1 28、弦切角定理 弦切角等于它所夹的弧对的圆周角 1 29、推论 假如两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 1 31、推论 假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 1 32、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 1 33、推论 从圆外一点引圆的两条割线,这一点
11、到每条 割线与圆的交点的两条线段长的积相等 1 34、假如两个圆相切,那么切点肯定在连心线上 1 35、两圆外离 dR+r 两圆外切 d=R+r 两圆相交 R-rdR+r(Rr) 两圆内切 d=R-r(Rr) 两圆内含 dR-r(Rr) 1 36、定理 相交两圆的连心线垂直平分两圆的公共弦 1 37、定理 把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 1 38、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 1 39、正n边形的每个内角都等于(n-2)180n 140、定理 正
12、n边形的半径和边心距把正n边形分成2n个全等的直角三角形 1 41、正n边形的面积Sn=pnrn2 p表示正n边形的周长 1 42、正三角形面积3a4 a表示边长 1 43、假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180n=360化为(n-2)(k-2)=4 1 44、弧长计算公式:L=n兀R180 1 45、扇形面积公式:S扇形=n兀R2360=LR2 1 46、内公切线长= d-(R-r) 外公切线长= d-(R+r) 三、常用数学公式 公式分类 公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)
13、 a3-b3=(a-b(a2+ab+b2) 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 某些数列前n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(
14、n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 初中数学学问点归纳口诀 1.1 有理数的加法运算 同号两数来相加,肯定值加不变号。 异号相加大减小,大数确定和符号。 互为相反数求和,结果是零须记好。 【注】“大”减“小”是指肯定值的大小。 1.2 有理数的减法运算 减正等于加负,减负等于加正 1.3 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 2 合并同类项 说起合并同类项,法则千万不能忘。 只求系数代数和,字母指数留原样。 3 去、添
15、括号法则 去括号、添括号,关键要看连接号。 扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。 4 解方程 已知未知闹分别,分别要靠移完成。 移加变减减变加,移乘变除除变乘。 5.1 平方差公式 两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。 5.2.1 完全平方公式 二数和或差平方,绽开式它共三项。 首平方与末平方,首末二倍中间放。 和的平方加联结,先减后加差平方。 5.2.2 完全平方公式 首平方又末平方,二倍首末在中心。 和的平方加再加,先减后加差平方。 6.1 解一元一次方程 先去分母再括号,移项变号要记牢。 同类各项去合并,系数化“1”还没好。 求
16、得未知须检验,回代值等才算了。 6.2 解一元一次方程 先去分母再括号,移项合并同类项。 系数化1还没好,精确无误不白忙。 7 因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。 8.1因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积2倍坐中心。 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 8.2 因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法敏捷选,连乘结果是基础。 同式相乘若出现
17、,乘方表示要记住 【注】 一提(提公因式)二套(套公式)8.3 因式分解 一提二套三分组,叉乘求根也上数。 五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。 8.4.1 用平方差公式因式分解 异号两个平方项,因式分解有方法。 两底和乘两底差,分解结果就是它。 8.4.2 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。 同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。 两边为负中间正,底差平方相反数。 一平方又一平方,底积2倍在中路。 三正两底和平方,全负和方相反数。 分成两底差平方,两端为正倍积负。 两边若负中间正,底差平方相反数。 8.5 二次三
18、项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。 9.1 比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。 前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。 9.2 解比例 外项积等内项积,列出方程并解之。 9.3 求比值 由已知去求比值,多种途径可利用。 活用比例七性质,变量替换也走红。 消元也是好方法,殊途同归会变通。 9.4.1 正比例与反比例 商定变量成正比,积定变量成反比
19、。 9.4.2 正比例与反比例 改变过程商肯定,两个变量成正比。 改变过程积肯定,两个变量成反比。 9.5.1 推断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数肯定成比例。 9.5.2 推断四式成比例 四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。 9.6 比例中项 成比例的四项中,外项相同会遇到。 有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会遇到。 成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。 同数平方等异积,比例中项无处逃。 10 根式与无理式 表示方根代数式,都可称其为根式。 根式异于无理式,被开方式无限制。
20、 被开方式有字母,才能称为无理式。 无理式都是根式,区分它们有标记。 被开方式有字母,又可称为无理式。 11 求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 限制条件不唯一,满意多个不等式。 求定义域要过关,四项原则须留意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。 12.1 解一元一次不等式 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”留意了。同乘除正无防碍,同乘除负也变号。 12.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 初中 数学 中考 知识点 归纳 总结
限制150内