高中数学复习专题:导数与函数的综合问题.docx
《高中数学复习专题:导数与函数的综合问题.docx》由会员分享,可在线阅读,更多相关《高中数学复习专题:导数与函数的综合问题.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3课时导数与函数的综合问题题型一导数与不等式命题点1证明不等式典例 (2017贵阳模拟)已知函数f(x)1,g(x)xln x.(1)证明:g(x)1;(2)证明:(xln x)f(x)1.证明(1)由题意得g(x)(x0),当0x1时,g(x)1时,g(x)0,即g(x)在(0,1)上为减函数,在(1,)上为增函数所以g(x)g(1)1,得证(2)由f(x)1,得f(x),所以当0x2时,f(x)2时,f(x)0,即f(x)在(0,2)上为减函数,在(2,)上为增函数,所以f(x)f(2)1(当且仅当x2时取等号)又由(1)知xln x1(当且仅当x1时取等号),且等号不同时取得,所以(x
2、ln x)f(x)1.命题点2不等式恒成立或有解问题典例 (2018大同模拟)已知函数f(x).(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;(2)如果当x1时,不等式f(x)恒成立,求实数k的取值范围解(1)函数的定义域为(0,),f(x),令f(x)0,得x1.当x(0,1)时,f(x)0,f(x)单调递增;当x(1,)时,f(x)0,f(x)单调递减所以x1为函数f(x)的极大值点,且是唯一极值点,所以0a1a,故a0,所以g(x)为单调增函数,所以g(x)g(1)2,故k2,即实数k的取值范围是(,2引申探究本例(2)中若改为:x01,e,使不等式f(x0)成立,求实数k
3、的取值范围解当x1,e时,k有解,令g(x)(x1,e),由例(2)解题知,g(x)为单调增函数,所以g(x)maxg(e)2,所以k2,即实数k的取值范围是.思维升华 (1)利用导数证明不等式的方法证明f(x)1时,h(x)0,h(x)是增函数,当0x1时,h(x)0)易求f(x)xln x(x0)的最小值为f,设(x)(x0),则(x),当x(0,1)时,(x)0,(x)单调递增;当x(1,)时,(x)恒成立,即F(x)0恒成立,函数F(x)无零点思维升华 利用导数研究方程的根(函数的零点)的策略研究方程的根或曲线的交点个数问题,可构造函数,转化为研究函数的零点个数问题可利用导数研究函数的
4、极值、最值、单调性、变化趋势等,从而画出函数的大致图象,然后根据图象判断函数的零点个数跟踪训练 (1)(2017贵阳联考)已知函数f(x)的定义域为1,4,部分对应值如下表:x10234f(x)12020f(x)的导函数yf(x)的图象如图所示当1a2时,函数yf(x)a的零点的个数为()A1 B2C3 D4答案D解析根据导函数图象知,2是函数的极小值点,函数yf(x)的大致图象如图所示由于f(0)f(3)2,1a0,则实数a的取值范围是_答案(,2)解析当a0时,f(x)3x21有两个零点,不合题意,故a0,f(x)3ax26x3x(ax2),令f(x)0,得x10,x2.若a0,由三次函数
5、图象知f(x)有负数零点,不合题意,故a0知,f0,即a33210,化简得a240,又a0,所以a2.题型三利用导数研究生活中的优化问题典例 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y10(x6)2,其中3x6,a为常数已知销售价格为5元/千克时,每日可售出该商品11千克(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大解(1)因为当x5时,y11,所以1011,解得a2.(2)由(1)可知,该商品每日的销售量为y10(x6)2.所以商场每日销售该商品所获得的利润为f(x)
6、(x3)210(x3)(x6)2,3x0),为使耗电量最小,则速度应定为_答案40解析令yx239x400,得x1或x40,由于当0x40时,y40时,y0.所以当x40时,y有最小值一审条件挖隐含典例 (12分)设f(x)xln x,g(x)x3x23.(1)如果存在x1,x20,2使得g(x1)g(x2)M成立,求满足上述条件的最大整数M;(2)如果对于任意的s,t,都有f(s)g(t)成立,求实数a的取值范围(1)存在x1,x20,2使得g(x1)g(x2)M(正确理解“存在”的含义)g(x1)g(x2)maxM挖掘g(x1)g(x2)max的隐含实质g(x)maxg(x)minM求得M
7、的最大整数值(2)对任意s,t都有f(s)g(t)(理解“任意”的含义)f(x)ming(x)max求得g(x)max1xln x1恒成立分离参数aaxx2ln x恒成立求h(x)xx2ln x的最大值ah(x)maxh(1)1a1规范解答解(1)存在x1,x20,2使得g(x1)g(x2)M成立,等价于g(x1)g(x2)maxM.2分由g(x)x3x23,得g(x)3x22x3x.令g(x)0,得x,又x0,2,所以g(x)在区间上单调递减,在区间上单调递增,所以g(x)ming,g(x)maxg(2)1.故g(x1)g(x2)maxg(x)maxg(x)minM,则满足条件的最大整数M4
8、.5分(2)对于任意的s,t,都有f(s)g(t)成立,等价于在区间上,函数f(x)ming(x)max.7分由(1)可知在区间上,g(x)的最大值为g(2)1.在区间上,f(x)xln x1恒成立等价于axx2ln x恒成立设h(x)xx2ln x,h(x)12xln xx,可知h(x)在区间上是减函数,又h(1)0,所以当1x2时,h(x)0;当x0.10分即函数h(x)xx2ln x在区间上单调递增,在区间(1,2)上单调递减,所以h(x)maxh(1)1,所以a1,即实数a的取值范围是1,)12分1(2018天津调研)已知函数yx33xc的图象与x轴恰有两个公共点,则c等于()A2或2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 复习 专题 导数 函数 综合 问题
限制150内