必修四数学知识点.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《必修四数学知识点.docx》由会员分享,可在线阅读,更多相关《必修四数学知识点.docx(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、必修四数学知识点必修四数学学问点1 平面对量 戴氏航天学校老师总结加法与减法的代数运算: (1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律); 两个向量共线的充要条件: (1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= . (2) 若=(),b=()则b . 平面对量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提示有且只 有
2、一对实数,使得= e1+ e2 高考数学必修四学习方法 养成良好的课前和课后学习习惯:在当前高中数学学习中,培育正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。同学们不得不预习课本。我预备的数学教科书不是简洁的阅读,而是一个例子,至少特别钟的思考。在使用前不能通过学习学问解决问题的状况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,把握解决问题的思路。同时,在课堂上支配笔记也是必要的。在高中数学争论中,建议接受两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸取力气,而且有助于对笔记内容的查询。 高考数
3、学必修四学习技巧 养成良好的学习数学习惯 多质疑、勤思考、好动手、重归纳、留意应用。同学在学习数学的过程中,要把老师所传授的学问翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、准时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 准时了解、把握常用的数学思想和方法 中学数学学习要重点把握的的数学思想有以上几个:集合与对应思想,分类争辩思想,数形结合思想,运动思想,转化思想,变换思想。 有了数学思想以后,还要把握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观看与试验,联想与类比,比较与分类,
4、分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 必修四数学学问点2 数列的图象 对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系: 序号:1234567 项:45678910 这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特殊的函数,数列是可以用图象直观地
5、表示的 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为便利起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化状况,但不精确. 把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点. 必修四数学学问点3 一)两角和差公式(写的都要记) sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB
6、+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 二)用以上公式可推出下列二倍角公式 tan2A=2tanA/1-(tanA)2 cos2a=(cosa)2-(sina)2=2(cosa)2-1=1-2(sina)2 (上面这个余弦的很重要) sin2A=2sinA_osA 三)半角的只需记住这个: tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 四)用二倍角中的余弦可推出降幂公式 (sinA)2=(1-cos2A)/2 (cosA)2=(1+cos2A)/2 五
7、)用以上降幂公式可推出以下常用的化简公式 1-cosA=sin(A/2)_ 1-sinA=cos(A/2)_ a(1)=a,a(n)为公差为r的等差数列 通项公式: a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。 n=1时,a(1)=a+(1-1)r=a。成立。 假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r 则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+(k+1)-1r. 通项公式也成立。 因此,由归纳法知,等差数列的.通项公式是正确的。 求和公式:
8、S(n)=a(1)+a(2)+.+a(n) =a+(a+r)+.+a+(n-1)r =na+r1+2+.+(n-1) =na+n(n-1)r/2 同样,可用归纳法证明求和公式。 a(1)=a,a(n)为公比为r(r不等于0)的等比数列 通项公式: a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1). 可用归纳法证明等比数列的通项公式。 求和公式: S(n)=a(1)+a(2)+.+a(n) =a+ar+.+ar(n-1) =a1+r+.+r(n-1) r不等于1时, S(n)=a1-rn/1-r r=1时, S(n)=na. 同样
9、,可用归纳法证明求和公式。 必修四数学学习方法 把握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规章。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必需遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开头,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感爱好),不利于解决问题方法把握连续性。同时,依据时间和课程支配的长度适当的审查,只有这样才能记住和使用在长期学习数学学问,不要遗忘前面的学习。 必修四数学学习技巧 重视改错错不重犯。 确定
10、要重视改错的这份工作,做到错不再犯。学校数学教学中接受的方法是告知同学全部可能的错误,只要有一个人犯了错误,就应当提出,以便全部的同学都能从中吸取教训。这叫“一人有病,全体吃药。” 高中数学课没有那么多时间,除了一小部分那几种典型错,其它错误,不能一一顾及。只能谁有病,谁吃药。假犹如学“生病”而忘了吃药,那么没有人会一次又一次地提示他要留意什么。假如能准时改错,那么错误就可能转变为财宝,成为预防针。但是,假如不能准时改错,这个错误就将形成一处“地雷”,迟早要惹祸。 有的同学认为,自己考试成果上不去,是由于太马虎。其实,缘由并非如此。打一个比方。比如说,学习开汽车。右脚下面,往左踩,是踩刹车。往
11、右踩,是踩油门。其机械原理,设计缘由,操作规程都可以讲的清清楚楚。假如初学驾驶的人真正把握了这一套,请问,可以同意他开车上路吗?生怕他知道他还缺乏练习。一两次你能正确地完成任务,但这并不意味着你永久不会犯错误。练习的数量不够,才是同学出错的真正缘由。大家确定要看到,假如自己的基础学问漏洞百出、隐患无穷,那么,今后的数学将是难以学好的。 必修四数学学问点4 复数的概念: 形如a+bi(a,bR)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,bR),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的
12、虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、bR)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。明显,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内全部的点所成的集合是一一对应关系,即 这是由于,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的.模: 复数z=a+bi(a、bR)在复平面上对应的点Z(a,
13、b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于1,即i2=1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律照旧成立 (3)i与1的关系:i就是1的一个平方根,即方程x2=1的一个根,方程x2=1的另一个根是i。 (4)i的周期性:i4n+1=i,i4n+2=1,i4n+3=i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、bR),当且仅当b=0时,复数a+bi(a、bR)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
14、两个复数相等的定义: 假如两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:假如a,b,c,dR,那么a+bi=c+di a=c,b=d。特殊地,a,bR时,a+bi=0 a=0,b=0。 复数相等的充要条件,供应了将复数问题化归为实数问题解决的途径。 复数相等特别提示: 一般地,两个复数只能说相等或不相等,而不能比较大小。假如两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。 解复数相等问题的方法步骤: (1)把给的复数化成复数的标准形式; (2)依据复数相等的充要条件解之。 数学学习技巧 1、做好预习: 单元预习时粗读,了解近阶段的学习内容,课时预习时细
15、读,留意学问的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。 2、认真听课: 听课应包括听、思、记三个方面。听,听学问形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要擅长联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记记方法,记疑点,记要求,记留意点。 3、认真解题: 课堂练习是最准时最直接的反馈,确定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。 4、准时纠错: 课堂练习、作业、检测,反馈后要准时查阅,分析错题的缘由,必要时强化相关计算的训练。不明白的问题要准时向同学和老师请教了,不能将问题处于悬而未解的状态,
16、养成今日事今日毕的好习惯。 数学中的合数是什么意思? 合数的概念 合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质dao数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。 什么是质数 质数又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。 依据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且假如不考虑这些质数在乘积中的挨次,那么写出来的形式是唯一的。最小的质数是2。 质数和合数应用 1、质
17、数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为查找素数的过程),将会由于找质数的过程(分解质因数)过久,使即使取得信息也会无意义。 2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增加耐用度削减故障。 必修四数学学问点5 一、立体几何初步 (1)棱柱: 定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、
18、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边
19、形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面开放图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面开放图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:上下底面是两个圆;侧面母线交于
20、原圆锥的顶点;侧面开放图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。 二、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作ab。若a、b不共线,则ab的模是:ab=|a|?|b|?sina,b;ab的方向是:垂直于a和b,且a、b和ab按这个次序构成右手系。若a、b共线,则ab=0。 向量的向量积性质: ab是以a和b为边的平行四边形面积。 aa=0。 ab=ab=0。 三、向量的向量积运算律 ab=-ba; (a)b=(ab)=a(b); (a+b)c=ac+b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 数学 知识点
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内