《基本不等式(第1课时)》教学设计(共15页).doc
《《基本不等式(第1课时)》教学设计(共15页).doc》由会员分享,可在线阅读,更多相关《《基本不等式(第1课时)》教学设计(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上必修5第三章 不等式3.4.1 基本不等式第一课时(王乙橙)一、教学目标1.核心素养通过学习基本不等式,提升学生的直观想象、数学运算与逻辑推理的能力.2.学习目标(1) 探索基本不等式的证明过程;(2) 会用基本不等式解决简单的最大(小)值问题.3.学习重点应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程.4.学习难点用基本不等式求的最大(小)值.二、教学设计(一)课前设计1.预习任务1.预习课本97页内容,感性认识a2+b22ab这个重要不等式和等号成立的条件.2.能尝试从两方面证明基本不等式吗:(1)代数法(2)几何法2.预习自测1.设a0,
2、b0,则+ 2(填或),并指出“”成立的条件.答案:2.已知aR,设P(4+a2)(4+),Q24,则P与Q的大小关系是.答案:PQ3.设a0,b0,ab,P=,Q=,M=,则P、Q、M按由小到大的顺序排列是答案:QMP(二)课堂设计1.问题探究问题探究一 什么是基本不等式?活动一 重要不等式? 观察与思考:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.你还记得是什么吗?(1)设直角三角形的长为a、b,那么正方形的边长为_;面积为_,4个直角三角形的面积和是_.(2)根据4个直角三角形的面积和与正
3、方形面积的大小关系,我们在初中的时候从这个图案中找出过一个相等关系_,化简后得到勾股定理 .(3)根据4个直角三角形的面积和与正方形面积的大小关系,我们可得到一个怎样的不等式_.(4)4个直角三角形的面积和与正方形的面积有相等的情况吗?何时相等?图形怎样变化?(5)你能给出它的证明吗?归纳小结:(重要不等式),对于任意的实数a,b,都有_;当且仅当_.活动二 什么是基本不等式?(1)既然对于任意的实数,都有,如果,用分别代替中的可以得到 .(2)对于不等式,你能给出证明吗?归纳小结:若那么_,我们把这个不等式叫做基本不等式(又叫均值不等式).(3)如下图,是圆的直径,点是上任一点,过点作垂直于
4、,连接、.你能利用这个图形得出基本不等式几何解释吗?基本不等式解读:基本不等式的几何意义: 平均数解释: 基本不等式成立的条件是_;结论是_.问题探究二 基本不等式有那些推论与重要变形? 重点知识,运用技巧1.平方平均、算术平均、几何平均与调和平均的关系:若,则有,当且仅当 取等.2. 基本不等式的几个重要变形:(1),,当且仅当 取等;(2),当且仅当 取等;(3)若, 则 2,当且仅当 取等;问题探究三 利用基本不等式能解决哪些问题? 重点、难点知识活动一 运用基本不等式比较大小例1(1)已知a、b(0,1),且ab,那么在ab,2,a2b2,2ab中的最大者为_.【知识点:基本不等式及取
5、等条件】详解:方法一a、b(0,1)且ab,ab2,a2b22ab.又当a、b(0,1)时,aa2,bb2,aba2b2.最大者为ab.方法二(特值法),取a,b,代入即得:最大者为ab.(2)设a0,b0,试比较, ,的大小,并说明理由.【知识点:算数平均数,几何平均数,调和平均数,均方根引出的重要结论】详解:方法一a0,b0,即(当且仅当ab时取等号).又()2, (当且仅当ab时等号成立)而,故 (当且仅当ab时等号成立).方法二(特值法)取a1,b4代入即得结论.点拨:(1)利用均值不等式及函数单调性是比较大小的常用方法;(2)代入特殊值,通过计算先估算大小关系,后比较大小更具有目标性
6、活动二 利用基本不等式求最值 例2 (1)已知a0,b0,且ab2,则当ab_时,ab有最小值_.(2)已知a0,b0,且ab2.则当ab_时,ab有最大值_.【知识点:基本不等式】详解:(1)ab2,当ab时,ab有最小值2.(2)ab()2,当ab1时,ab有最大值1.点拨:利用基本不等式求最值,必须同时满足以下三个条件:各项均为正数;其和或积为常数;等号必须成立.即“一正,二定,三相等”.简记:积定和最小,和定积最大.活动三 利用基本不等式求最值例3 (1)已知x1,求f(x)x的最小值.(2)已知x0、y0,且5x7y20.求xy的最大值.【知识点:基本不等式;数学思想:配凑,基本不等
7、式推论】详解:(1)x1,x10.f(x)xx11211.当且仅当x1,即x0时取“”.f(x)min1.(2)x0,y0,xy(5x7y)()2()2.当且仅当5x7y10,即x2,y时,取“”.(xy)max.点拨:在应用基本不等式求最值时,要把握定理成立的三个条件,就是“一正(各项都是正数),二定(积或和是定值),三相等(等号能否成立)”.求最值时,若忽略了某个条件,就会出现错误.导致解题的失败.如:本题(1)已知中将x1改为x2,则值域将变为(,).2.课堂总结1. 基础知识思维导图重要不等式:,均值不等式的应用均值不等式:,均值不等式的重要变形2.重点难点突破利用均值不等式求最值时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基本不等式第1课时 基本 不等式 课时 教学 设计 15
限制150内