长方体和正方体的体积教学设计优秀6篇_1.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《长方体和正方体的体积教学设计优秀6篇_1.docx》由会员分享,可在线阅读,更多相关《长方体和正方体的体积教学设计优秀6篇_1.docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、长方体和正方体的体积教学设计优秀6篇长方体和正方体的体积教学设计 篇一 教材简析 这部分教材是学生已经掌握长方体和正方体的特征,了解体积的意义,初步掌握长方体和正方体体积公式的基础上,引导学生进一步探索长方体和正方体的体积公式,在探索中通过分析、比较、归纳,掌握长方体(正方体)的体积=底面积高这一直棱柱体积的通用公式。 练一练和练习六第48题,先直观看图计算,再比较长方体(正方体)的体积底面积高与前面所学长方体、正方体体积计算方法的不同和联系,在比较中巩固上述公式的推理过程,然后在练习中解决一些实际问题。这样由浅入深,既巩固了长方体(正方体)的体积底面积高的体积公式,又使学生学会解决实际问题,
2、体会到数学在日常生活中的应用,感受数学的价值,还发展学生的空间观念。 探索并掌握长方体(正方体)的体积底面积高的计算是本节课的重点。 教学目标 1、使学生在具体的情境中,经历比较、讨论、验证、归纳等数学活动过程,探索并掌握长方体(正方体)的体积底面积高的计算方法,能解决与体积计算有关的一些简单实际问题。 2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。 3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好书学得的自信心。 教学过程 一、观察直观图形,认识并计算长方体、正方体的底面积 (出示长方体、正方体)谈话:同学们,我们学过
3、了长方体、正方体的特征和表面积。请同学们在小组中找出这两个图形的底面分别是哪两个面? 根据学生的回答,教师在图中涂色呈现出底面。 提问:这两个图形的底面积是哪两个面的面积? 根据学生的回答,教师板书底面积定义。 再提问:怎样计算长方体和正方体的底面积? 根据学生的回答,明确长方体、正方体底面积的计算方法,教师板书计算公式。 评:数学课程标准要求:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,在学生理解和掌握长方体、正方体特征和表面积基础上,让学生自己归纳、探索底面积的定义和计算公式,体现数学学习是一个再创造过程。 二、探索长方体(正方体)的体积底面积高的计算方法 1、提问:我
4、们前面学习的长方体、正方体体积是如何计算的? 根据学生的回答,教师板书体积公式 2、谈话:长方体和正方体的体积也可以这样来计算:长方体(正方体)的体积底面积高 3、提问:在小组中讨论为什么可以这样来计算长方体、正方体的体积? 学生在小组中讨论得出结论,教师帮助学生进行相应整理 4、请同学们尝试用字母表示这个公式 根据学生的回答,教师板书字母公式 评:观察、思考、讨论、交流等都是数学课程标准所提倡的数学活动。在这里,先把公式直接告诉学生,让学生在借助已有知识的基础上,凭借他们自己的经验,在小组中充分交流、合作,在探索、比较中充分理解长方体(正方体)的体积底面积高的推理过程。 三、分析、比较加深长
5、方体(正方体)的体积底面积高的理解 1、出示练一练第1题 、学生独立思考完成 、讨论:这样计算长方体和正方体的体积与原来的计算方法有什么不同?有什么联系? 2、出示练一练第2题 独立做题,在班内共同订正 评:在学生独立解决问题中,关注这种计算公式与原来计算公式的不同与联系,进一步巩固长方体(正方体)的体积底面积高的计算方法,感受数学的魅力。 四、巩固练习、拓展应用 1、做练习六第4题 、借助实物帮助学生理解占地面积的实际含义 、使学生明确所占空间就是储物柜的体积 、独立做题,在班内共同订正 评:让学生在实际应用中,巩固用底面积高计算长方体体积的方法,感受这种方法在解决实际问题过程中的作用。 2
6、、做练习六第5题 、结合图让学生指一指这根横截面的位置 、引导学生想象:如果将这根木料竖起来,木料的横截面就是这个长方体的哪个面?木料的长与竖起来的长方体的高有什么关系?可以怎样计算它的体积? 评:引导学生联系长方体体积底面积高这一方法,理解用横截面面积长计算长方体体积的方法,有利于学生从不同角度加深对体积计算方法的理解。 3、做练习六第6题 、使学生明确黄沙铺成的形状是长方体,铺的厚度是长方体的高 、明确要求用方程解 评:这是一个在长方体沙坑铺黄沙的实际问题,让学生根据长方体的体积以及长和宽(或底面积),求它的高,既体现了知识的综合应用,又有利于提高学生应用公式解决实际问题的能力。 4、做练
7、习六第7题 、弄清题中两个问题的联系与区别 、引导学生寻找计算花坛所占空间大小以及花坛内泥土体积所需要的条件 、提示:从里面量,花坛的高没有变,但底面正方形的边长只有1.30.320.7(米) 评:通过让学生计算花坛所占的空间和花坛里有多少泥土这两个问题,让学生在比较中进一步明确体积和容积的不同意义。 5、做练习六第8题 、合理选择相应的信息解决实际问题 、独立思考,在班内共同订正 评:通过跑道上铺三合土和塑胶的实际问题,培养学生合理选择信息解决有关体积计算的实际问题的能力。 五、激励评价,问题延伸 谈话:请同学们说说这节课你有什么收获?你是怎样知道的?回家后选择你身边的长方体或正方体,测量并
8、用今天学习的知识计算它的体积。 评:课堂总结不但关注学生知识与技能的掌握,而且关注了学生的学习过程,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。 长方体和正方体的体积教学设计 篇二 教学准备 教学目标 1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。 2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。 3、运用体积计算公式解决一些简单的实际问题。 4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。 2、教学重点/难点 教学重点:引导学生探索长方体体积的计算方法。 教学难
9、点:理解长方体体积公式的意义。 3、教学用具 教学课件、一个长方体拼制模型 4、标签 长方体和正方体的体积 教学过程 一、 启发谈话,激趣引入 同学们,最近你们发现的城市有哪些变化呢?在城市里为什么要建这么多高楼大厦呢?如果建平房,会怎么样? 老师带来一件衣服,谁想试一试?(点名让一胖一瘦上来)问:同样一件衣服,为什么有的宽松,有的紧?(因为他们体型不一样,也就是占的空间不一样)这节课,我们就来研究跟空间有关的内容。板书课题:体积 二、学习“体积”、“体积单位”的概念 1、出示大、小苹果,问:哪只苹果占的空间大?你能从自己的身边选两件物体,比比它们的大小吗? 2、出示差不多大的土豆和一个长方体
10、石块,你知道它们哪个大吗?那你有什么办法? 演示书上的实验,得出:土豆占的空间小,石块占的空间大。 3、师揭示:物体所占空间的大小,叫做物体的体积。土豆和石块相比,谁的体积大,谁的体积小? 4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。 5、学生汇报: (1)常用的体积单位 (2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。 (3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。 6、摆一摆:用棱长是1厘米的正方
11、体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材) 得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。 三、自主探究长方体和正方体体积公式 1、猜一猜:长方体和正方体体积跟什么可能有关? 2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。 3、小组合作:学生四人一小组操作并做好实验记录。 思考: (1)每排摆几个?每层摆了几排?摆了几层? (2)一共摆了多少个小正方体? (3)这个图形的体积是多少? 4、汇报实验结果 每排个数 每层排数 层数 小正方体个数 所拼长方体的体积 5、探究长方体的体积公式
12、 让学生观察表格中填写的各数,你发现了什么? 小正方体的个数= 每排个数每层排数层数 长方体的体积 =长 宽 高 6、学生汇报,交流,板书 7、讨论:摆出的长方体的体积,与它的长、宽、高有什么关系?得出结论:长方体的体积=长宽高,用字母表示:V=abh 8、应用公式,学习例题:一个长方体的长是7厘米,宽是4厘米,高是3厘米,它的体积是多少? 读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。 四、知识迁移推出正方体的体积公式 1、师:长方体和正方体之间有什么关系? 生:正方体是长、宽、高都相等的特殊的长方体。 师:根据这种关系,你能推导出正方体的体积公
13、式吗? 2、师生共同归纳:正方体的体积=棱长棱长棱长 用字母表示为: V= aaa= a3 师强调:读作a 的立方,表示3个a相乘。3 a表示3个a相加。 3、应用公式: 例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少? 课堂小结 回顾一下,今天的学习大家有什么收获? 课后习题 (1)。一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘 米。( ) (2)。一个正方体的棱长是2分米,它的体积是多少立方分米? 列式为23=23=6(立方分 米)( ) (3)。棱长6厘米的正方体,表面积和体积一样 大。 ( ) 板书 长方体、正方体的体积 物体所占空间的大小,叫做物体
14、的体积。 常用的体积单位有:立方米、立方分米、立方厘米。 小正方体的个数= 每排个数每层排数层数 长方体的体积 = 长宽 高 V =abh 正方体的体积=棱长棱长棱长 V = aaa= a3 长方体和正方体的体积教学设计 篇三 教学目标: 1理解并掌握长方体和正方体体积的计算方法; 2能运用长、正方体的体积计算解决一些简单的实际问题; 3培养学生归纳推理,抽象概括的能力。 教学重点: 长方体和正方体体积的计算方法。 教学难点: 长方体和正方体体积公式的推导。 教学用具: 教具:1立方厘米的立方体24块,1立方分米的立方体1块。 学具:1立方厘米的立方体20块。 教学过程: 一、复习准备 1提问
15、:什么是体积? 2请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排。 教师提问:拼成了一个什么形体?(长方体) 这个长方体的体积是多少?(4立方厘米) 你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成) 如果再拼上一个1立方厘米的正方体呢?(5立方厘米) 谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位今天我们 来学习怎样计算长方体和正方体的体积。 板书课题:长方体和正方体的体积 二、学习新课 (一)长方体的体积【演示动画长方体体积1】 1拼摆长方体: 请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆 出的长方体的长、宽、高 2学生汇报,教
16、师板书: 教师提问:这些长方体有什么共同点?(体积相等) 不同点?(数据不同) 为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位 12个1立方厘米) 教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么? 师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1 立方厘米的正方体同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层。 3【演示动画 长方体体积2】 第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。 一排摆出4个1立方厘米的正方体一共摆了三排摆两层 第二组:同上要求摆出长3
17、厘米,宽3厘米,高2厘米的长方体。 一排摆出3个1立方厘米的正方体一共摆了3排摆2层 第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积。 一排摆出5个1立方厘米的正方体一共摆了4排摆2层 思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长 方体的体积有没有关系?是什么关系? (长方体的体积正好等于它的长、宽、高的乘积) 教师板书:长方体的体积长宽高 教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成: 板书: Vabh 出示投影图: 4自学例1。 一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少? 74384(立方厘米) 答:它的体积
18、是84立方厘米。 (二)正方体体积。 1【演示课件正方体体积】 教师提问:此时的长,宽,高各是多少? 变成了什么图形? 这个正方体的体积可以求出来吗? 2练习 棱长为2分米,它的体积是多少平方分米?2228(立方分米) 棱长为4厘米,它的体积是多少平方厘米?44464(立方厘米) 3归纳正方体体积公式。 教师板书:正方体体积棱长棱长棱长。 用V表体积,a表示棱长 Vaaa或者Va3 4独立解答例2。 光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米? (分米3 ) 答:体积是125立方分米。 (三)讨论长方体和正方体的体积计算方法是否相同。 学生归纳:因为正方体是特殊的长方体。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 长方体 正方体 体积 教学 设计 优秀 _1
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内