高三数学知识点总结 .docx
《高三数学知识点总结 .docx》由会员分享,可在线阅读,更多相关《高三数学知识点总结 .docx(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学知识点总结 高三数学学问点总结 1 1.数列的定义、分类与通项公式 (1)数列的定义: 数列:依据确定挨次排列的一列数. 数列的项:数列中的每一个数. (2)数列的分类: 分类标准类型满足条件 项数有穷数列项数有限 无穷数列项数无限 项与项间的大小关系递增数列an+1an其中nN_ 递减数列an+1 常数列an+1=an (3)数列的通项公式: 假如数列an的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 2.数列的递推公式 假如已知数列an的首项(或前几项),且任一项an与它的前一项an-1(n2)(或前几项)间的关系可用一个公式来表示,那么这个公
2、式叫数列的递推公式. 3.对数列概念的理解 (1)数列是按确定“挨次”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列挨次有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列. (2)数列中的数可以重复消逝,而集合中的元素不能重复消逝,这也是数列与数集的区分. 4.数列的函数特征 数列是一个定义域为正整数集N_(或它的有限子集1,2,3,n)的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(nN_). 高三数学学问点总结 2 1、课前预习:首先上课前要做预习,课前预习能提前了解将要学习的学问。 2、记
3、笔记:指的是课堂笔记,每节课时间有限,老师一般讲的.都是精华部分。 3、课后复习:通预习一样,也是行之有效的方法。 4、涉猎课外习题:多涉猎一些课外习题,学习它们的解题思路和方法。 5、学会归类总结:学习数学记得东西很多,假如单纯的记忆每个公式,不但增加记忆量而且简洁忘。 6、建立纠错本:把经常出错的题目集中在一起。 7、写考试总结:考试总结可以关怀找出学习之中不足之处,以及学问的薄弱环节。 8、培育学习爱好:爱好是最好的老师,只有有了爱好才会自主自发的进行学习,学习效率才会提高。 高三数学学问点总结 3 不等式的解集: 能使不等式成立的未知数的值,叫做不等式的解。 一个含有未知数的不等式的全
4、部解,组成这个不等式的解集。 求不等式解集的过程叫做解不等式。 不等式的判定: 常见的不等号有“”“b”或“a 不等号的开口所对的数较大,不等号的尖头所对的数较小; 在列不等式时,确定要留意不等式关系的关键字,如:正数、非负数、不大于、小于等等。 任一x?A,x?B,记做AB AB,BAA=B AB=x|x?A,且x?B AB=x|x?A,或x?B Card(AB)=card(A)+card(B)-card(AB) (1)命题 原命题若p则q 逆命题若q则p 否命题若p则q 逆否命题若q,则p (2)AB,A是B成立的充分条件 BA,A是B成立的必要条件 AB,A是B成立的充要条件 1.集合元
5、素具有确定性;互异性;无序性 2.集合表示方法列举法;描述法;韦恩图;数轴法 (3)集合的运算 A(BC)=(AB)(AC) Cu(AB)=CuACuB Cu(AB)=CuACuB (4)集合的性质 n元集合的字集数:2n 真子集数:2n-1; 非空真子集数:2n-2 高三数学学问点总结 4 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。 正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。 特殊棱锥的顶点在底面的射影位置: 棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心
6、。 棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心。 棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。 棱锥的顶点毕竟面各边距离相等,则顶点在底面上的射影为底面多边形内心。 三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。 三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。 每个四周体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; 每个四周体都有内切球,球心是四周体各个二面角的平分面的交点,到各面的距离等于半径。 注: i、各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。()(各个侧面的等腰三角形
7、不知是否全等) ii、若一个三角锥,两条对角线相互垂直,则第三对角线必定垂直。 简证:ABCD,ACBD BCAD。令得,已知则。 iii、空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形确定是矩形。 iv、若是四边长与对角线分别相等,则顺次连结各边的中点的四边是确定是正方形。 简证:取AC中点,则平面90易知EFGH为平行四边形 EFGH为长方形。若对角线等,则为正方形。 高三数学学问点总结 5 第一部分集合 (1)含n个元素的集合的子集数为2n,真子集数为2n1;非空真子集的数为2n2; (2)留意:争辩的时候不要遗忘了的状况。 其次部分函数与导数 1、映射:留意 第一个集合中
8、的元素必需有象; 一对一,或多对一。 2、函数值域的求法: 分析法; 配方法; 判别式法; 利用函数单调性; 换元法; 利用均值不等式; 利用数形结合或几何意义(斜率、距离、确定值的意义等); 利用函数有界性; 导数法 3、复合函数的有关问题 (1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式ag(x)b解出。 若fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域。 (2)复合函数单调性的判定: 首先将原函数分解为基本函数:内函数与外函数; 分别争论内、外函数在各自定义域内的单调性; 依据“同性则增,异性则减”来推断原函
9、数在其定义域内的单调性。 留意:外函数的定义域是内函数的值域。 4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5、函数的奇偶性 (1)函数的定义域关于原点对称是函数具有奇偶性的必要条件; (2)是奇函数; (3)是偶函数; (4)奇函数在原点有定义,则; (5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为简洁,应先等价变形,再推断其奇偶性; 高三数学学问点总结 6 考点一:集合与简易规律 集合部分一般以选择题消逝,属简洁题。重点考查集合间关系的理解和熟识。近年的试题加强了对集合计算化简力气的考查,并向无限集进展
10、,考查抽象思维力气。在解决这些问题时,要留意利用几何的直观性,并留意集合表示方法的转换与化简。简易规律考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、规律联结词、“充要关系”、命题真伪的推断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用规律用语表达数学解题过程和规律推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简洁
11、应用,如求函数的单调区间、极值与最值等,通常以客观题的形式消逝,属于简洁题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式消逝,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。 考点三:三角函数与平面对量 一般是2道小题,1道综合解答题。小题一道考查平面对量有关概念及运算等,另一道对三角学问点的补充。大题中假如没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面对量为主的试题,要留意数形结合思想在解题中的应用。向量重点考查平面对量数量积的概念及应用,向量与直
12、线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、 考点四:数列与不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简洁线性规划问题、基本不等式的.应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵敏应用,一道解答题大多凸显以数列学问为工具,综合运用函数、方程、不等式等解决问题的力气,它们都属于中、高档题目、 考点五:立体几何与空间向量 一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;
13、三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有12个客观题和一个解答题,多为中档题。 考点六:解析几何 一般有12个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面对量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。 考点七:算法复数推理与证明 高考对算法的考查以选择题或填空题的形式消逝,或给解答题披层“外衣”、考查的热点是流程图的识别与算法
14、语言的阅读理解、算法与数列学问的网络交汇命题是考查的主流、复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大、推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问、 高三数学学问点总结 7 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面对量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每
15、一个高中同学所必需学习的。 上述内容掩盖了高中阶段传统的数学基础学问和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些学问的发生、进展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 2.重难点及考点: 重点:函数,数列,三角函数,平面对量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: 集合与简易规律:集合的概念与运算、简易规律、充要条件 函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函
16、数、对数与对数函数、函数的应用 数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用 三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用 平面对量:有关概念与初等运算、坐标运算、数量积及其应用 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、确定值不等式、不等式的应用 直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系 圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用 直线、平面、简洁几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空
17、间向量 排列、组合和概率:排列、组合应用题、二项式定理及其应用 概率与统计:概率、分布列、期望、方差、抽样、正态分布 导数:导数的概念、求导、导数的应用 复数:复数的概念与运算 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高). 正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形. 特殊棱锥的顶点在底面的射影位置: 棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. 棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. 棱锥的各侧面与底面所成角均相等,则顶点
18、在底面上的射影为底面多边形内心. 棱锥的顶点毕竟面各边距离相等,则顶点在底面上的射影为底面多边形内心. 三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. 三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心. 每个四周体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; 每个四周体都有内切球,球心 是四周体各个二面角的平分面的交点,到各面的距离等于半径. 注:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.()(各个侧面的等腰三角形不知是否全等) ii.若一个三角锥,两条对角线相互垂直,则第三对角线必定垂直. 简证:ABCD,ACBD BCAD.
19、令得,已知则. iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形确定是矩形. iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是确定是正方形. 简证:取AC中点,则平面90易知EFGH为平行四边形 EFGH为长方形.若对角线等,则为正方形. 立体几何初步 (1)棱柱: 定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平
20、行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数学知识点总结 数学 知识点 总结
限制150内