《数列求和》教学设计(共7页).doc
《《数列求和》教学设计(共7页).doc》由会员分享,可在线阅读,更多相关《《数列求和》教学设计(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数列求和教学设计高三文科数学第一轮复习(第1课时)邵武一中杜海光一、学情分析:学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节专题探究课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。二、教法设计:本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,
2、在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。在教学过程中采取如下方法:诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性;分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性;讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。三、教学设计:1、教材的地位与作用:对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归与转化思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转
3、化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。2、教学重点、难点:教学重点:根据数列通项求数列的前n项,本节课重点学习并项分组求和与裂项法求和。教学难点:解题过程中方法的正确选择。3、教学目标:(1)知识与技能: 会根据通项公式选择求和的方法,并能运用并项分组求和与裂项法求数列的前n项。 (2)过程与方法:
4、培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力;通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。(3)情感、态度与价值观:通过对数列的通项公式的分析和探究,培养学生主动探索、勇于发现的求知精神;通过对数列通项和数列求和问题的分析和探究,使学生养成细心观察、认真分析、善于总结的良好思维习惯;通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。四、教学过程:教学步骤教学活动设计意图一、复习引入(一)巩固:求下列数列的前n项和:135(2n1)= (二)引入1、对一个数列我们应关注它什么?、对一个非特
5、殊数列,如何求和?(转化为等差、等比数列)3、引导学生回忆数列几种常见的求和方法:公式法拆并项求和裂项相消法倒序相加法错位相减法、提出问题:如何对非特殊的数列求和?学生练习,教师提问对于提示学生要注意分类教师提问,学生回答充分发挥学生学习的能动性,以学生为主体,展开课堂教学通过学生对几种常见的求和方法的归纳、总结,简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系二、例题选讲:问题求下列数列的和(1) 13579+101= .(2) 设Sn13579(1)n1(2n1), 求Sn(3) .(4)若数列an的通项公式为,则数列an的前n项和Sn= .教师讲解:()分析(一) Sn(
6、13)(57)(9-11)(97-99)+101分析(二)Sn1+(35)+(79)+(-1113)+(-99+101)分析(三) Sn(1+5+101)-(3+7+99) 分析(四) Sn13579+101Sn101-99+97-95+1()分析:当n2k (kN*)时,SnS2k(13)(57)(4k3)(4k1)2kn当n2k1 (kN*)时,SnS2k1S2ka2k2k(4k1)2k1n综上所述,有Sn(1)n1n()+()56()变式1()Sn10029929829722212,求Sn.(2) (教材习题改编)(2351)(4352)(2n35n)_.(3)已知数列an的通项公式是a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列求和 数列 求和 教学 设计
限制150内