一元二次方程应用题的题型(共8页).doc
《一元二次方程应用题的题型(共8页).doc》由会员分享,可在线阅读,更多相关《一元二次方程应用题的题型(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一元二次方程的应用题型一、传播问题1.一台电脑被感染,经过两轮感染后就会有81台电脑被感染,每轮感染中平均一台电脑感染几台电脑?若病毒得不到有效控制,3轮感染后,被感激涕零电脑会不会超过700台?2有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?二、循环问题(一)单循环1参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2.某城市开贸易会,每两家都要签定一份合同,共签定了9
2、1份,问有多少厂家来参加贸易会?(二)双循环1.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?3.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?(三)特殊循环1一个正八边形,它有多少条对角线?二、平均率问题(一)平均增长率问题1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率。2.某种商品,原价50元,受金融危机影响,1月份降价10,从2月份开始涨价
3、,3月份的售价为64.8元,求2、3月份价格的平均增长率。3. 为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数。4恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.(二)平均下降率问题1.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少?2.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?3. 市政府为了解决市民
4、看病难的问题,决定下调药品的价格。某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为 商品定价:1、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(35010a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?三、商品销售问题(注:售价进价=利润一件商品的利润销售量=总利润单价销售量=销售额)(一)给出关系式1.某商店购进一种商品,进价30元试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种
5、商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?2.某玩具厂计划生产一种玩具熊猫,每日最高产量为只,且每日产出的产品全部售出,已知生产只熊猫的成本为(元),售价每只为(元),且与x的关系式分别为R=500+30X,P=1702X。() 当日产量为多少时每日获得的利润为元?() 若可获得的最大利润为元,问日产量应为多少?(二)一个“+”一个“”3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那
6、么每千克应涨价多少元?4.服装柜在销售中发现某品牌童装平均每天可售出件,每件盈利元。为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现,如果每件童装每降价元,那么平均每天就可多售出件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?5.西瓜经营户以元千克的价格购进一批小型西瓜,以元千克的价格出售,每天可售出千克。为了促销,该经营户决定降价销售。经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克。另外,每天的房租等固定成本共元。该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?6利达经销店为某工
7、厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理)。当每吨售价为260元时,月销售量为45吨。该经销店为提高经营利润,准备采取降价的方式进行促销。经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨。综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元。(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元。(3)小静说:“当月利润最大时,月销售额也最大。”你认为对吗?请说明理由。7、国家为了加强对香烟产销的宏观管理,对销售香烟实行征
8、收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x元(叫做税率x%), 则每年的产销量将减少10x万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?四、面积问题1.一个直角三角形的两条直角边的和是14cm,面积是24cm2,求两条直角边的长。2.一个直角三角形的两条直角边相差5,面积是72,求斜边的长。3.一个菱形两条对角线长的和是10,面积是122,求菱形的周长(结果保留小数点后一位)4.为了绿化学校,需移植草皮到操场,若矩形操场
9、的长比宽多14米,面积是3200平方米则操场的长为 米,宽为 米。5.若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm2,则原正方形的边长为 cm.6.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽。7.有一面积为54cm2的长方形,将它的一组对边剪短5cm,另一组对边剪短2cm,刚好变成一个正方形,这个正方形的边长是多少?8.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80,求所截去的小正方形的边长
10、。9.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了多少元钱?10.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551。则道路的宽为?11.一块长和宽分别为40厘米和250厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?12、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙
11、(墙长18m),另三边用木栏围成,木栏长35m。鸡场的面积能达到150m2吗?鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由。(3)若墙长为m,另三边用竹篱笆围成,题中的墙长度m对题目的解起着怎样的作用?13、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.五、银行问题1、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息
12、取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)2、周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)3某人将1000元人民币按一年定期存入银行,到期后将本金和利息再按一年定期存入银行,两年后本金
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 应用题 题型
限制150内