数控加工技术概述16359.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数控加工技术概述16359.pptx》由会员分享,可在线阅读,更多相关《数控加工技术概述16359.pptx(113页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 数控加工技术数控加工技术.数控技术概述1.11.1数控技术的基本概念数控技术的基本概念数字控制(数字控制(Numerical Control Technology,NC)是一种借助数字化信息(数字、字符)对某一工作过程(如加工、测量、装配等)发出指令并实现自动控制的技术。数控系统(数控系统(Numerical Control System)采用数字控制技术的自动控制系统。数控机床(数控机床(Numerical Control Machine Tools)是采用数字控制技术对机床的加工过程进行自动控制的一类机床。数控机床是一种装有程序控制系统(数控系统)的高效自动化机床。是数控技术典型应用的例
2、子。.数控机床的产生与发展 2.制造业的发展需求制造业的发展需求 产品日趋精密、复杂,改型频繁,提出高性能、高精度和产品日趋精密、复杂,改型频繁,提出高性能、高精度和高自动化要求高自动化要求一一.产生背景产生背景1传统机床的不足传统机床的不足人工操作,劳动强度大,难以提高生产效率人工操作,劳动强度大,难以提高生产效率人为误差,难以保证质量人为误差,难以保证质量难以加工复杂形状的零件难以加工复杂形状的零件不利于生产管理现代化不利于生产管理现代化1国外国外 19301930年,数控专利年,数控专利 19481948年,数控机床生产的萌芽年,数控机床生产的萌芽 1952195219521952年,第
3、一台数控铣床年,第一台数控铣床年,第一台数控铣床年,第一台数控铣床 1958195819581958年,第一台加工中心年,第一台加工中心年,第一台加工中心年,第一台加工中心 19681968年,柔性制造系统年,柔性制造系统 19741974年,采用微处理器年,采用微处理器 19901990年,采用基于工业年,采用基于工业PCPC的计算机数控系统的计算机数控系统2国内国内 1958195819581958年,第一台数控铣床年,第一台数控铣床年,第一台数控铣床年,第一台数控铣床 1975197519751975年,第一台加工中心年,第一台加工中心年,第一台加工中心年,第一台加工中心 2020世纪世
4、纪9090年代末,华中数控自主开发出基于年代末,华中数控自主开发出基于PC-NCPC-NC的的HNCHNC数控系统数控系统二产生与发展历程二产生与发展历程.数控机床的产生与发展1.2 数控机床的产生与发展第五代:微处理器数控(1974年)第四代:小型机数控(1967年)第三代:集成电路式(1965年)第二代:晶体管分立元件式(1959年)第一代:电子管、继电器式(1952年)硬、软件数控软件数控硬件数控3数控系统的产生和发展数控系统的产生和发展.知名数控系统知名数控系统 日本FANUC德国西门子SIEMENS 日本三菱MITSUBISHI 日本山崎马扎克(MAZAK)西班牙发格(FAGOR)华
5、中数控系统 广州数控系统 国内知名:1.2 数控机床的产生与发展1.数控系统的发展趋势数控系统的发展趋势1)高速高精度高速高精度2)智能化智能化(1)应用自适应控制技术(2)自动编程技术(3)具有故障自动诊断功能(4)应用模式识别技术3)开放式数控系统开放式数控系统三三.数控机床的发展趋势数控机床的发展趋势1.2 数控机床的产生与发展4)基于网络的数控系统基于网络的数控系统(1)数控系统内部的CNC装置与数字伺服间的 通信,主要通过SERCOS链式网络传送数字伺服控制信息;(2)数控系统与上级主计算机间的通信;(3)与车间现场设备及I/O装置的通信,主要通过现场总线,如PROFIBUS等进行通
6、讯;(4)通过因特网与服务中心的通信,传递维修数据;(5)通过因特网与另一个工厂交换制造数据。1.2 数控机床的产生与发展2.数控机床的发展趋势数控机床的发展趋势l l运行高速化l l加工高精化l l功能复合化l l控制智能化l l体系开放化l l交互网络化1.2 数控机床的产生与发展加工高精化提高机械设备的制造和装配精度;提高数控系统的控制精度;采用误差补偿技术。1.2 数控机床的产生与发展功能复合化复合化是指在一台设备能实现多种工艺手段加工的方法。镗铣钻复合加工中心(ATC)、五面加工中心(ATC,主轴立卧转换);车铣复合车削中心(ATC,动力刀头);铣镗钻车复合复合加工中心(ATC,可自
7、动装卸车刀架);铣镗钻磨复合复合加工中心(ATC,动力磨头);可更换主轴箱的数控机床组合加工中心;1.2 数控机床的产生与发展控制智能化 随着人工智能技术的不断发展,并为满足制造业生产柔性化、制造自动化发展需求,数控技术智能化程度不断提高,具体体现在以下几个方面:加工过程自适应控制技术加工参数的智能优化与选择智能故障诊断与自修复技术智能化交流伺服驱动装置1.2 数控机床的产生与发展体系开放化定义(定义(IEEEIEEE):):具有在不同的工作平台上均能实现系统功能、且可以与其他的系统应用进行互操作的系统。开放式数控系统特点:开放式数控系统特点:系统构件(软件和硬件)具有标准化、多样化和互换性的
8、特征允许通过对构件的增减来构造系统,实现系统“积木式”的集成。构造应该是可移植的和透明的;开放体系结构CNC的优点向未来技术开放:向未来技术开放:由于软硬件接口都遵循公认的标准协议,只需少量的重新设计和调整,新一代的通用软硬件资源就可能被现有系统所采纳、吸收和兼容,这就意味着系统的开发费用将大大降低而系统性能与可靠性将不断改善并处于长生命周期;标准化的人机界面:标准化的人机界面:标准化的编程语言,方便用户使用,降低了和操作效率直接有关的劳动消耗;向用户特殊要求开放:向用户特殊要求开放:更新产品、扩充能力、提供可供选择的硬软件产品的各种组合以满足特殊应用要求,给用户提供一个方法,从低级控制器开始
9、,逐步提高,直到达到所要求的性能为止。另外用户自身的技术诀窍能方便地融入,创造出自己的名牌产品;可减少产品品种,便于批量生产、提高可靠性和降低成本,增强市场供应能力和竞争能力。1.2 数控机床的产生与发展交互网络化支持网络通讯协议,既满足单机需要,又能满足FMC、FMS、CIMS对基层设备集成要求的数控系统,该系统是形成“全球制造”的基础单元。网络资源共享。数控机床的远程(网络)监视、控制。数控机床的远程(网络)培训与教学(网络数控)数控装备的数字化服务(数控机床故障的远程(网络)诊断、远程维护、电子商务等)。1.3 数控机床的工作过程数控机床仍采用刀具和磨具对材料进行切削加工,这点在本质上和
10、普通机床并无区别。但在如何控制切削运动等方面则与传统切削加工存在本质上的差别,如下图。零件图编制工艺卡工人操作机床编制程序零件图键盘输入加工运动数控装置伺服装置加工运动检测(a)普通机床加工(b)数控机床加工信息反馈数控车床的结构控制面板控制面板显示器显示器滚珠丝杆滚珠丝杆刀刀 架架主主 轴轴1.4 数控加工技术的特点(1)生产效率高,由于加工过程是自动进行的,且机床能自动换刀、自动不停车变速和快速空行程等功能,使加工时间大大减少 (2)能稳定地获得高精度,数控加工时人工干预减少,可以避免人为误差,且机床重复精度高 (3)由于机床自动化程度大大提高,减轻了工人劳动强度,改善了劳动条件 (4)加
11、工能力提高,应用数控机床可以很准确的加工出曲线、曲面、圆弧等形状非常复杂的零件,因此,可以通过编写复杂的程序来实现加工常规方法难以加工的零件1.5 数控系统的组成现代数控机床一般由数控装置(NC unit)、伺服系统(servo system)、位 置 测 量 与 反 馈 系 统(feedback system)、辅助控制单元(accessory control unit)和机床主机(main engine)组成,下图是各组成部分的逻辑结构简图:数控装置是数控机床的核心,能完成信息的输入、存储、变换、插补运算以及实现各种功能;伺服系统是接受数控装置的指令,驱动机床执行机构运动的驱动部件,它包括
12、主轴驱动单元(主要是速度控制)、进给驱动单元(主要有速度控制和位置控制)、主轴电机和进给电机等。位置测量与反馈系统由检测元件和相应电路组成,其作用是检测速度与位移,并将信息反馈给数控装置,形成闭环控制;但不一定每种数控机床都装备位置测量与反馈系统(图中虚线部分表示该模块不是基本配置),没有测量与反馈系统的数控装置称开环控制系统(如运动简单的中低档数控车床),常用的测量元件有脉冲编码器、旋转变压器、感应同步器、光栅尺等。辅助控制单元用以控制机床的各种辅助动作,包括:冷却泵的启停等各种辅助操作。机床主机包括床身、主轴、进给机构等机械部件。滚珠丝杠螺母机构,在丝杠1和螺母4上各加工有圆弧,当螺母4旋
13、转时,丝杠1的旋转面经滚珠2推动螺母4轴向移动,同时滚珠2沿螺旋形滚道滚动,使丝杠1和螺母4之间的滑动摩擦转为滚珠与丝杠1、螺母4之间的滚动摩擦。螺母螺旋槽的两端用回珠管3连接起来,使滚珠2能够从一端重新回到另一端,构成一个闭合的循环回路。各类中小型数控机床普遍采用滚珠丝杠。1.6 数控机床主机中的传动机构 为了适应数控机床加工范围广,工艺适应性强和自动化程度高的特点,要求主传动装置具有很宽的变速范围,并能无级变速,随着全数字化交流调速技术的日趋完善,齿轮分级变速传动在逐渐减少,大多数数控机床采用电动机直接驱动主轴的结构。数控机床的进给传动装置,灵敏度和稳定性,将直接影响到工件的加工质量,因此
14、常采用不同于普通机床的进给机构,例如采用线性导轨、塑料导轨或静压导轨代替普通滑动导轨,用滚珠丝杠螺母机构代替普通的滑动丝杠螺母机构,以及采用可以消除间隙的齿轮传动副和可以消除间隙的键连接等 数控加工过程所需的各种操作(如主轴变速、松夹工件、进刀与退刀、开车与停车、选择刀具、供给冷却液等)和步骤以及与工件之间的相对位移等都用数字化的代码表示,并按工艺先后顺序组织成“NC程序”,数控机床之所以能够加工一些几何形状复杂的零件,就是因为数控机床的坐标轴能够联动,编程人员在编写NC程序时,使用规定的NC代码体系,只给出联动轴的起终点坐标及插补速度等的代码,而完成联动轴在起终点间的运动过程参数要由NC自动
15、求出。2.数控加工原理插补原理:插补是在已知曲线的起终点之间,确定一些中间点坐标的一种计算方法,机械零件大部分由直线和圆弧组成,因此NC都具有直线和圆弧的插补功能。零件程序中提供了直线的起点和终点坐标,圆弧的起点坐标以及圆弧走向(顺时针或逆时针)或圆心相对于起点的偏移量或圆弧半径。插补的任务,是根据偏程进给速度的要求,完成从轮廓起点到终点的中间点坐标值的计算。2.6 数控加工原理(续)如图所示,刀具由O至A,直线OA是其理论轨迹。如何确定控制轴X、Z的走向呢?用逐点比较法:每走一步与理论轨迹比较一下,从而确定下一步的走向。起点坐标(0,0),终点坐标(Xe,Ze)于是直线OA的方程为:X/Z=
16、Xe/Ze;即:ZXe-XZe=0;若 点(X,Z)在 直 线 上 方,则:ZXe-XZe0;若 点(X,Z)在 直 线 下 方,则:ZXe-XZe0时,NC发出移动微指令,使控制轴向+X方向移动一个步长;当F0时,NC发出移动微指令,使控制轴向+Z方向移动一个步长;当F=0时,可以规定NC使控制轴向+X或+Z方向移动一个步长 这样可以不断地趋向终点,图中,带箭头的折线轨迹是机床实际运动的插补轨迹,直线OA是理论轨迹,由于插补运算所取的步长很小,所以可以近似地认为插补轨迹就是直线OA的理论轨迹。刀具补偿原理:是指NC对编程时零件轮廓轨迹与刀具实际运行轨迹差值进行补偿的功能。如右图所示:用一个半
17、径为R的刀具加工图中的实线表示的工件,刀具运行的实际中心轨迹应为图中的虚线所示,于是刀具离开工件的这一个距离就是偏置(二者之间相差一个刀具半径R),偏置量(offset value)是一个二维的矢量,可正可负 同理:在刀具长度方向上,每种刀具长度不一致,也是采用同样的方法进行补偿,称刀具长度补偿。刀具补偿又可以分为形状补偿(geometry offset)和磨损补偿(wear offset),运行程序前的刀具标称半径或长度是形状补偿量,在加工过程中,刀具由于磨损的作用发生细微的尺寸变化,这时,将磨损量输入到磨损补偿号中,可以不必改动形状补偿号。方便操作。3.数控加工编程基础.1 机机床床坐坐标
18、标系系.1.1 机床坐标系和主运动方向机床坐标系和主运动方向 1标准坐标系的规定标准坐标系的规定 对数控机床中的坐标系和运动方向的命名,ISO标准和我国JB305282部颁标准都统一规定采用标准的右手笛卡儿直角坐标系,一个直线进给运动或一个圆周进给运动定义一个坐标轴。标准中规定直线进给运动用右手直角笛卡儿坐标系X、Y、Z表示,常称基本坐标系。X、Y、Z坐标轴的相互关系用右手定则决定。如图-1所示,图中大拇指的指向为X轴的正方向,食指指向为Y轴的正方向,中指指向为Z轴的正方向。围绕X、Y、Z轴旋转的圆周进给坐标轴分别用A、B、C表示。根据右手螺旋法则,可以方便地确定A、B、C三个旋转坐标轴。以大
19、拇指指向X、Y、Z方向,则食指、中指等的指向是圆周进给运动A、B、C方向。图3-1 右手直角笛卡儿坐标系 如果数控机床的运动多于X、Y、Z三个坐标,则可用附加坐标轴U、V、W分别表示平行于X、Y、Z三个坐标轴的第二组直线运动;如果在回转运动A、B、C外还有第二组回转运动,可分别指定为D、E、F。然而,大部分数控机床加工的动作只需三个直线坐标轴及一个旋转轴便可完成大部分零件的数控加工。2运动方向的确定运动方向的确定数控机床的进给运动,有的是由刀具向工件运动来实现的,有的是由工作台带着工件向刀具来实现的。为了在不知道刀具、工件之间如何作相对运动的情况下,便于确定机床的进给操作和编程,统一规定标准坐
20、标系X、Y、Z作为刀具(相对于工件)运动的坐标系,增大刀具与工件距离的方向为坐标正方向,即坐标系的正方向都是假定工件静止、刀具相对于工件运动来确定的。考虑到刀具与工件是一对相对运动,即刀具向某一方向运动等同于工件向其相反方向运动的特点,图3-1中虚线所示的X、Y、Z必然是工件(相对于刀具)正向运动的坐标系。3坐标轴的确定坐标轴的确定(1)Z轴的确定。统一规定与机床主轴重合或平行的坐标为Z轴,远离工件的方向为正方向。机床主轴是传递切削动转矩的轴。如数控车床、数控外圆磨床是主轴带动工件旋转,数控铣床、数控钻床等是主轴带动刀具旋转。对于没有主轴的机床,规定垂直于工件装夹表面的方向为Z坐标轴的方向,正
21、向是使刀具离开工件的方向。(2)X轴的确定。X轴为水平的、平行于工件装夹面的轴。对于加工过程中主轴带动工件旋转的机床,如数控车床、数控磨床等,X轴沿工件的径向并平行于横向拖板,刀具或砂轮离开工件旋转中心的方向为X轴的正向。对于如铣床、钻床、镗床等刀具旋转的机床,若Z轴水平(主轴是卧式的),当从主轴(刀具)向工件看时,X轴的正向指向右边,如数控卧式镗床、铣床;若Z轴垂直(主轴是立式的),对于单立柱机床,当从主轴向立柱看时,X轴的正向指向右边,对于双立柱机床,当从主轴向左侧立柱看时,X轴的正向指向右边。(3)Y轴的确定。根据X、Z轴及其方向,可按右手直角笛卡儿坐标系,利用右手螺旋法则确定轴。根据X
22、、Y、Z轴及其方向,利用右手螺旋法则即可确定A、B、C的方向。一些数控机床的坐标系如图3-2所示。3.1.2 机床原点和机床参考点机床原点和机床参考点1机床原点机床原点机床原点是机床基本坐标系的原点,是工件坐标系、机床参考点的基准点,又称机械原点、机床零点,它是机床上的一个固定点,其位置是由机床设计和制造单位确定的,通常不允许用户改变,如图3-3所示。数控车床的机床原点一般在卡盘前端面或后端面的中心;数控铣床的机床原点,各生产厂不一致,有的在机床工作台的中心,有的在进给行程的终点。图3-3 数控机床的机床原点与参考点 2机床参考点机床参考点是机床坐标系中一个固定不变的点,是机床各运动部件在各自
23、的正向自动退至极限的一个点(由限位开关精密定位),如图3-3所示。机床参考点已由机床制造厂测定后输入数控系统,并记录在机床说明书中,用户不得更改。实际上,机床参考点是机床上最具体的一个机械固定点,既是运动部件返回时的一个固定点,又是各轴启动时的一个固定点,而机床零点(机床原点)只是系统内运算的基准点,处于机床何处无关紧要。机床参考点对机床原点的坐标是一个已知定值,可以根据该点在机床坐标系中的坐标值间接确定机床原点的位置。在机床接通电源后,通常要做回零操作,使刀具或工作台运动到机床参考点。注意,通常我们所说的回零操作,其实是指机床返回参考点的操作,并非返回机床零点。当返回参考点的工作完成后,显示
24、器即显示出机床参考点在机床坐标系中的坐标值,表明机床坐标系已经自动建立。机床在回参考点时所显示的数值表示参考点与机床零点间的工作范围,该数值被记忆在CNC系统中,并在系统中建立了机床零点作为系统内运算的基准点。也有机床在返回参考点时,显示为零(X0,Y0,Z0),这表示该机床零点被建立在参考点上。3.1.3 工件坐标系和工件原点工件坐标系和工件原点工件坐标系是编程人员在编程时使用的,由编程人员以工件图纸上的某一固定点为原点所建立的坐标系,编程尺寸都按工件坐标系中的尺寸确定。为保证编程与机床加工的一致性,工件坐标系也应该是右手笛卡儿坐标系,而且工件装夹到机床上时,应使工件坐标系与机床坐标系的坐标
25、轴方向保持一致。工件坐标系的原点称为工件原点或编程原点。工件原点在工件上的位置可以任意选择,为了有利于编程,工件原点最好选在工件图样的基准上或工件的对称中心上,例如回转体零件的端面中心、非回转体零件的角边、对称图形的中心等。在数控车床上加工零件时,工件原点一般设在主轴中心线与工件右端面或左端面的交点处如图3-4(a)所示;在数控铣床上加工零件时,工件原点一般设在工件的某个角上或对称中心上,如图3-4(b)所示。图3-4 工件原点设置(a)数控车床;(b)数控铣床 3.1.4 工件坐标系和机床坐标系的关系工件坐标系和机床坐标系的关系编程时,尺寸都按工件坐标系中的尺寸确定,不必考虑工件在机床上的安
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数控 加工 技术 概述 16359
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内