三元一次方程组典型例题讲解(共9页).doc
《三元一次方程组典型例题讲解(共9页).doc》由会员分享,可在线阅读,更多相关《三元一次方程组典型例题讲解(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上泉州龙文教育授课对象授课教师授课时间授课题目三元一次方程组典型例题课 型使用教具教学目标 会解三元一次方程组教学重点和难点 能熟练的选择适当的方法解三元一次方程组参考教材 教材教学流程及授课详案一、三元一次方程组之特殊型例1:解方程组分析:方程是关于x的表达式,通过代入消元法可直接转化为二元一次方程组,因此确定“消x”的目标。解法1:代入法,消x.把分别代入、得解得把y=2代入,得x=8. 是原方程组的解.根据方程组的特点,由学生归纳出此类方程组为:类型一:有表达式,用代入法型.针对上例进而分析,方程组中的方程里缺z,因此利用、消z,也能达到消元构成二元一次方程组的目
2、的。 解法2:消z.5得 5x+5y+5z=60 - 得 4x+3y=38 由、得 解得把x=8,y=2代入得z=2. 是原方程组的解.根据方程组的特点,由学生归纳出此类方程组为:类型二:缺某元,消某元型.例2:解方程组分析:通过观察发现每个方程未知项的系数和相等;每一个未知数的系数之和也相等,即系数和相等。具备这种特征的方程组,我们给它定义为“轮换方程组”,可采取求和作差的方法较简洁地求出此类方程组的解。解:由+得4x+4y+4z=48, 即x+y+z=12 . -得 x=3,-得 y=4,-得 z=5, 是原方程组的解.典型例题举例:解方程组 解:由+得2(x+y+z)=60 , 即x+y
3、+z=30 . -得 z=10,-得 y=11,-得 x=9, 是原方程组的解.根据方程组的特点,由学生归纳出此类方程组为:类型三:轮换方程组,求和作差型.例3:解方程组分析1:观察此方程组的特点是未知项间存在着比例关系,根据以往的经验,学生看见比例式就会想把比例式化成关系式求解,即由x:y=1:2得y=2x; 由x:z=1:7得z=7x.从而从形式上转化为三元一次方程组的一般形式,即,根据方程组的特点,学生可选用“有表达式,用代入法”求解。解法1:由得y=2x,z=7x ,并代入,得x=1.把x=1,代入y=2x,得y=2;把x=1,代入z=7x,得 z=7. 是原方程组的解.分析2:由以往
4、知识可知遇比例式时,可设一份为参数k,因此由方程x:y:z=1:2:7,可设为x=k,y=2k,z=7k.从而也达到了消元的目的,并把三元通过设参数的形式转化为一元,可谓一举多得。解法2:由设x=k,y=2k,z=7k,并代入,得k=1.把k=1,代入x=k,得x=1;把k=1,代入y=2k,得y=2;把k=1,代入z=7k,得 z=7. 是原方程组的解.典型例题举例:解方程组分析1:观察此方程组的特点是方程、中未知项间存在着比例关系,由例3的解题经验,学生易选择将比例式化成关系式求解,即由得x = y; 由得z=.从而利用代入法求解。解法1:略.分析2:受例3解法2的启发,有的学生想使用设参
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三元 一次 方程组 典型 例题 讲解
限制150内