不等式与线性规划含答案(共14页).doc
《不等式与线性规划含答案(共14页).doc》由会员分享,可在线阅读,更多相关《不等式与线性规划含答案(共14页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上不等式与线性规划考情解读(1)在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题(2)多与集合、函数等知识交汇命题,以填空题的形式呈现,属中档题1四类不等式的解法(1)一元二次不等式的解法先化为一般形式ax2bxc0(a0),再求相应一元二次方程ax2bxc0(a0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集(2)简单分式不等式的解法变形0(0(1时,af(x)ag(x)f(x)g(x);当0aag
2、(x)f(x)1时,logaf(x)logag(x)f(x)g(x)且f(x)0,g(x)0;当0alogag(x)f(x)0,g(x)0.2五个重要不等式(1)|a|0,a20(aR)(2)a2b22ab(a、bR)(3)(a0,b0)(4)ab()2(a,bR)(5) (a0,b0)3二元一次不等式(组)和简单的线性规划(1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等(2)解不含实际背景的线性规划问题的一般步骤:画出可行域;根据线性目标函数的几何意义确定最优解;求出目标函数的最大值或者最小值4两个常用结论(1)ax2bxc0(a0)恒成立的条件是(2)ax2bxc
3、0(a0)恒成立的条件是热点一一元二次不等式的解法例1(1)(2013安徽)已知一元二次不等式f(x)0的解集为_(2)已知函数f(x)(x2)(axb)为偶函数,且在(0,)单调递增,则f(2x)0的解集为_思维启迪(1)利用换元思想,设10xt,先解f(t)0.(2)利用f(x)是偶函数求b,再解f(2x)0.答案(1)x|xlg 2(2)x|x4解析(1)由已知条件010x,解得x0.f(2x)0即ax(x4)0,解得x4.思维升华二次函数、二次不等式是高中数学的基础知识,也是高考的热点,“三个二次”的相互转化体现了转化与化归的数学思想方法(1)不等式0的解集为_(2)已知p:x0R,m
4、x10,q:xR,x2mx10.若pq为真命题,则实数m的取值范围是_答案(1)(,1(2)(2,0)解析(1)原不等式等价于(x1)(2x1)0或x10,即x1或x1,所以不等式的解集为(,1(2)pq为真命题,等价于p,q均为真命题命题p为真时,m0;命题q为真时,m240,解得2m2.故pq为真时,2m0,且1.所以()2(当且仅当,即m,n2时,取等号)所以,即mn3,所以mn的最大值为3.(2)2x2(xa)2a22a42a,由题意可知42a7,得a,即实数a的最小值为.热点三简单的线性规划问题例3(2013湖北)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的
5、载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为_元思维启迪通过设变量将实际问题转化为线性规划问题答案36 800解析设租A型车x辆,B型车y辆时,租金为z元,则z1 600x2 400y,且x,y满足画出可行域如图,直线yx过点A(5,12)时纵截距最小,所以zmin51 6002 4001236 800,故租金最少为36 800元思维升华(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示
6、的几何意义,利用数形结合找到目标函数的最优解(3)对于应用问题,要准确地设出变量,确定可行域和目标函数(1)已知实数x,y满足约束条件,则w的最小值是_(2)(2013北京)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x02y02,求得m的取值范围是_答案(1)1(2)解析(1)画出可行域,如图所示w表示可行域内的点(x,y)与定点P(0,1)连线的斜率,观察图形可知PA的斜率最小为1.(2)当m0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P(x0,y0)满足x02y02,因此m0.如图所示的阴影部分为不等式组表示的平面区域要使可行域内包含yx
7、1上的点,只需可行域边界点(m,m)在直线yx1的下方即可,即mm1,解得m.1几类不等式的解法一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x轴交点的横坐标,即二次函数的零点;分式不等式可转化为整式不等式(组)来解;以函数为背景的不等式可利用函数的单调性进行转化2基本不等式的作用二元基本不等式具有将“积式”转化为“和式”或将“和式”转化为“积式”的放缩功能,常常用于比较数(式)的大小或证明不等式或求函数的最值或解决不等式恒成立问题解决问题的关键是弄清分式代数式、函数解析式、不等式的结构特点,选择好利用基本不等式的切入点,并创造基本不等式的应用背景,如通过“代换”、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式 线性规划 答案 14
限制150内